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Abstract

Modern speech communication technologies expose users to perceptual quality degra-

dations that were not experienced earlier with conventional telephone systems. Since

perceived speech quality is a major contributor to the end user’s perception of quality

of service, speech quality estimation has become an important research field. In this

dissertation, perceptual quality estimators are proposed for several emerging speech

communication applications, in particular for i) wireless communications with noise

suppression capabilities, ii) wireless-VoIP communications, iii) far-field hands-free

speech communications, and iv) text-to-speech systems.

First, a general-purpose speech quality estimator is proposed based on statistical

models of normative speech behaviour and on innovative techniques to detect multiple

signal distortions. The estimators do not depend on a clean reference signal hence are

termed “blind.” Quality meters are then distributed along the network chain to allow

for both quality degradations and quality enhancements to be handled. In order to

improve estimation performance for wireless communications, statistical models of

noise-suppressed speech are also incorporated.

Next, a hybrid signal-and-link-parametric quality estimation paradigm is proposed

for emerging wireless-VoIP communications. The algorithm uses VoIP connection

parameters to estimate a base quality representative of the packet switching network.
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Signal-based distortions are then detected and quantified in order to adjust the base

quality accordingly. The proposed hybrid methodology is shown to overcome the

limitations of existing pure signal-based and pure link parametric algorithms.

Temporal dynamics information is then investigated for quality diagnosis for

hands-free speech communications. A spectro-temporal signal representation, where

speech and reverberation tail components are shown to be separable, is used for blind

characterization of room acoustics. In particular, estimators of reverberation time,

direct-to-reverberation energy ratio, and reverberant speech quality are developed.

Lastly, perceptual quality estimation for text-to-speech systems is addressed. Text-

and speaker-independent hidden Markov models, trained on naturally produced speech,

are used to capture normative spectral-temporal information. Deviations from the

models, computed by means of a log-likelihood measure, are shown to be reliable indi-

cators of multiple quality attributes including naturalness, fluency, and intelligibility.
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Chapter 1

Introduction

The speech communications industry is going through a phase of rapid development

and new services and technologies are emerging continuously. In a society where

“mobility,” “low-cost,” and the ability to “multi-task” have become essential, a decline

in the use of the plain old telephone system (POTS) has been witnessed. As an

example, a recent study by Statistics Canada has shown that “cellphone use in Canada

has just about caught up with traditional wire lines as the wireless industry continues

to grow in reach and profitability” [1]. The report shows that in December 1999, of

100 Canadian inhabitants, 18.7 were wireless subscribers and 64.4 were traditional

wireline subscribers. As of December 2006, these percentages were 55.1 and 55.3,

respectively.

Where low-cost telephony is concerned, voice over internet protocol (VoIP) has

been gaining grounds rapidly. Recent technologies include cable VoIP [2], mobile

VoIP (also known as wireless-VoIP) [3–5], as well as conventional VoIP, where service

providers, such as Skype and Vodafone, have gained wide popularity. According to

recent studies, users can expect savings of up to 40% on telephone bills by switching

1
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to VoIP; businesses can expect larger savings with substantially lower long-distance

expenses [6]. Moreover, companies such as AwayPhone claim that savings of up to

90% in mobile phone calls made from abroad can be attained with the use of Mobile

VoIP [7]. In fact, recent research by the consulting firm ON World has suggested that

by 2011 the number of wireless-VoIP users around the world will rise to 100 million

from 7 million in 2007. It is also estimated that in 2011, wireless-VoIP voice services

will generate $33.7 billion, up from $516 million in 2006, the most recent year for

which the figure is available [8].

Although mobility and low-cost seem to be the driving forces behind the expan-

sion of wireless and VoIP services, multi-tasking (in conjunction with mobility) is

paving the way for hands-free speech communications. Applications include voice-

activated controls in automobiles, voice controlled applications in personal computers

(PC), as well as conventional applications such as video conferencing. More recently,

popular VoIP PC-based telephony applications such as Skype, MSN Messenger, and

GoogleTalk have also increased demand for hands-free communications. In such ap-

plications, the use of a single microphone is not efficient and, commonly, multiple

microphones (also known as microphone arrays) are used to reduce background noise

and reverberation. As examples of the expected growth and popularity of hands-free

communications, Microsoft’s new operating system, Windows Vista, provides support

for microphone arrays; moreover, most computer manufacturers are now producing

laptops that are equipped with a microphone array.

While such technological advances facilitate human interaction, users are now ex-

posed to perceptual degradations that were not experienced with the conventional

POTS. Examples of such distortions include varying types and levels of acoustic



CHAPTER 1. INTRODUCTION 3

background noise, packet losses, and reverberation, all of which have peculiar charac-

teristics that are detrimental to speech quality and intelligibility. In order to reduce

such detrimental effects, current research has focused on developing novel “speech en-

hancement” algorithms for acoustic noise suppression, packet loss concealment (PLC),

and reverberation suppression (also termed dereverberation). Under severe adverse

conditions, however, even the most advanced state-of-the-art speech enhancement al-

gorithm will undoubtedly introduce unwanted perceptual artifacts that compromise

speech quality and intelligibility.

Moreover, a research area that has also witnessed rapid growth over the last decade

is that of text-to-speech (TTS) synthesis. As the name suggests, TTS systems at-

tempt to convert arbitrary input text into intelligible and naturally sounding speech.

Earlier applications of TTS systems served mostly as an aid to the visually impaired.

Today, TTS systems have broad applications in education, business, entertainment,

and medicine. Representative applications include email and short message service

readers, automated directory assistance, foreign language education [9], and assistive

and augmentative communications [10]. As reported in recent Blizzard TTS Chal-

lenges,1 current state-of-the-art TTS systems, albeit producing high-quality naturally

sounding outputs, are still not capable of synthesizing speech that is indistinguishable

from naturally-produced speech.

Ultimately, the success or failure of an innovative speech communication technol-

ogy relies on the end user’s perception of “quality” and “usability.” While the latter

can comprise factors such as cost and ease-of-use, the former commonly includes fac-

tors such as presence of perceptual artifacts, (un)naturalness of the speech signal, or

1The Blizzard Challenge is run annually by the ISCA Speech Synthesis Special Interest Group
and consists of a venue where different TTS systems are subjectively evaluated and compared.
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loss in speech intelligibility. In this manuscript style thesis, focus is placed on quality

evaluation methods for emerging speech communication applications. Quality evalu-

ation can be performed either subjectively, with human listeners, or objectively, by

means of a computational algorithm. In Sections 1.1-1.2 to follow, subjective and ob-

jective speech quality assessment methods are reviewed. Motivation and objectives,

thesis contributions, and thesis organization are further described in Sections 1.3-1.5,

respectively.

1.1 Subjective Speech Quality Assessment

As defined in [11], speech quality is the result of a subjective perception-and-judgment

process, during which a listener compares the perceptual event (speech signal heard)

to an internal reference of what is judged to be “good quality.” Subjective assessment

plays a key role in characterizing the quality of emerging telecommunications prod-

ucts and services. It is known, for example, that the perceived quality of a speech

signal processed by a novel speech coding algorithm, or transmitted over a novel net-

work architecture, will reflect the end user’s experience with the system under test.

Subjective speech quality testing attempts to quantify this user experience. More-

over, the results of subjective evaluations can be used to define performance targets,

to ensure appropriate product performance, and to define national and international

standards [12].

Subjective tests can be grouped into two larger classes: listening- and conversational-

quality tests. Listening tests, as the name suggests, has listeners “passively” rate (on

a pre-specified scale) the quality of the short-duration speech signal they have just

heard. Conversational tests, on the other hand, are interactive and listeners are asked
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to rate the quality of a call based on the listening quality and on their ability to con-

verse during the call. In conversational tests, factors such as echoes and delays have

to be taken into account. Listening quality tests are by far the most widely used tests

in the speech communications realm and can be further classified as unidimensional

or multidimensional. The International Telecommunication Union (ITU-T) has, over

the years, published several Recommendations describing guidelines for conducting

uni- and multidimensional subjective evaluations of listening quality in order to ob-

tain reliable and reproducible test results (e.g., see [13–15]). Some representative

subjective listening quality tests are described next.

1.1.1 Unidimensional Listening Quality Tests

ITU-T Recommendation P.800 [13] describes three unidimensional scales to be used

for subjective listening quality tests: absolute category rating (ACR), degradation

category rating (DCR) and comparison category rating (CCR). In ACR testing, lis-

teners are instructed to rate the processed speech material presented to them ac-

cording to the 5-point quality scale described in Table 1.1, column labeled “ACR.”

Listeners are not presented with clean reference speech files for comparisons and are

asked to rate the “absolute” quality of the speech samples. The average of the listener

scores is termed the subjective mean opinion score, or subjective MOS.

On the other hand, in DCR and CCR tests listeners are presented with both

the reference (clean) and the processed (degraded) speech signals. With DCR tests,

listeners are instructed to rate the perceived degradation of the processed speech

material relative to the unprocessed material using the scale shown in Table 1.1,

column labeled “DCR.” In the CCR test, listeners are asked to identify the quality of
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Table 1.1: Subjective rating scale for absolute category rating (ACR) and degradation
category rating (DCR) tests.

Rating ACR DCR (Level of degradation)

5 Excellent Imperceptible
4 Good Just perceptible but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying but not objectionable
1 Unsatisfactory Very annoying and objectionable

the processed speech sample relative to its unprocessed counterpart using a two-sided

rating scale, as given by Table 1.2. During half of the trials, the unprocessed sample

is followed by the processed sample; the order is reversed for the remaining trials. As

such, CCR testing improves on DCR testing as it minimizes biases that occur due to

the order in which the speech materials are presented.

Since DCR and CCR tests require the presentation of two speech signals per trial,

they usually take longer to perform. According to [12], listeners are able to attend

to speech samples and give consistent ratings for tests up to about an hour long. As

a consequence, subjective listening tests usually span multiple sessions over multiple

weeks. This limitation, in combination with the costs associated with multiple-session

tests, has popularized ACR testing. Today, it is the most common type of listening

test in the telecommunications industry; the abbreviation MOS-LQS is commonly

used to denote listening quality subjective MOS [15].

1.1.2 Multidimensional Listening Quality Tests

A major drawback of the aforementioned subjective tests is that listeners rate the

quality of the speech signal using a single perceptual quality dimension. Studies have
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Table 1.2: Subjective rating scale for comparison category rating (CCR) tests. Lis-
teners are asked to rate the quality of the signal played the second time relative to
the signal played the first time.

Category CCR

3 Much better
2 Better
1 Slightly better
0 About the same
-1 Slightly worse
-2 Worse
-3 Much worse

shown that different dimensions are involved in subjective quality perception [16–

18]. Commonly, multidimensional tests solicit separate reactions from the listeners

with regards to what is perceived as the speech signal itself, the background, and

the overall effect [16]. The so-called diagnostic acceptability measure (DAM) test,

proposed in the late 1970’s, was the first test to categorize distortions according to

several different attributes [16].

The DAM methodology evaluates the signal using thirteen separate diagnostic

scores: six are based on perceptual qualities of the signal, four on perceptual qualities

of the background, and three on perceptual qualities of the signal-plus-background

total effect. All diagnostic scores are rated on a monopolar rating scale ranging from

0 (negligible effect) to 100 (extreme effect). A description of the different attributes

that are evaluated in a DAM test is given in Table 1.3, along with each attribute’s

intrinsic effect on acceptability. Composite signal and background perceptual quality

scores can be obtained by aggregating individual scores obtained by the attributes

in each domain. Lastly, a single-dimensional (overall) acceptability measure may be

obtained by aggregating the composite scores and the total effect scores.
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Table 1.3: Diagnostic acceptability measure quality scales

Perceptual domain Descriptor Effect

Signal

fluttering, bubbling severe
distant, thin mild
rasping, crackling severe
muffled, smothered mild
irregular, interrupted moderate
nasal, whining moderate

Background

hissing, rushing moderate
buzzing, humming moderate
chirping, bubbling severe
rumbling, thumping moderate

Total effect
intelligibility –
pleasantness –
acceptability –

Due to time and cost constraints, multidimensional tests did not gain popularity

and were seldom used by the communications industry in the last 30 years. Ad-

vances in speech communications and speech enhancement technologies, however,

have revived interest in multidimensional tests. As an example, the study described

in [18] proposes to categorize modern distortions according to thirteen different labels

(e.g., noisy, muffled, intelligible, interrupted). Via principal components analysis, the

thirteen descriptors are shown to group into three quality dimensions, namely: “di-

rectness/frequency content,” “continuity,” and “noisiness.” Regression analysis has

shown that continuity appears to be the most important dimension in terms of over-

all listening quality [18].

Moreover, the ITU-T has recently published Recommendation P.835 [19], which

sets guidelines as to how to conduct multidimensional tests for systems that include

an acoustic noise suppression algorithm. It is known, for example, that many noise
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Table 1.4: Subjective rating scale for signal distortion (SIG) and background intru-
siveness (BCK), according to ITU-T Rec. P.835

Rating SIG BCK

5 Not Distorted Not Noticeable
4 Slightly Distorted Slightly Noticeable
3 Somewhat Distorted Noticeable but Not Intrusive
2 Fairly Distorted Somewhat Intrusive
1 Very Distorted Very Intrusive

suppression algorithms can introduce unwanted artifacts to the speech signal. A

typical artifact is known as “musical noise” [20]. In such situations, subjects can

become confused as to which components of a noisy speech signal should form the basis

of their ratings of overall quality. To reduce the error variance (or listener uncertainty)

in the subjects’ ratings of overall quality, the P.835 methodology instructs the listener

to successively attend to and rate three different components of the noise suppressed

speech signal: the speech signal alone, background noise alone, and the overall effect.

When assessing the speech signal alone, listeners are instructed to use the “signal

distortion” scale described by column “SIG” in Table 1.4. The background noise is

examined using the “background intrusiveness” scale described by column “BCK.”

The overall effect uses the ACR scale described in Table 1.1 and the notation “OVRL”

will be used throughout the remainder of this dissertation. The process of rating the

signal alone and the background noise alone leads the listener to integrate the effects

of both the signal and the background in making their ratings of overall quality [21].

Although multidimensional tests have not been formally proposed to specifically

handle distortions resulting from packet losses (and packet loss concealment algo-

rithms) or reverberation (and dereverberation algorithms), the subjective test de-

scribed in [22], tuned to reverberant and dereverberated speech, is a step forward in
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this direction. In the study, listeners are instructed to rate the quality of the signal

based on three dimensions: colouration (frequency distortion due to early reflections,

causes signal to sound “boxy”), reverberation tail effect (temporal smearing due to

late reflections, causes signal to sound distant and with echoes), and overall speech

quality. The methodology and guidelines described in [19] were used to carry out the

subjective tests.

For synthesized speech, on the other hand, multidimensional quality tests, such

as those described in ITU-T Recommendation P.85 [23], have been used since the

early 1990’s. In the test, listeners are asked to rate the signal using eight quality

dimensions labeled: overall impression (MOS), listening effort (LSE), comprehension

problems (CMP), articulation (ART), pronunciation (PRO), speaking rate (SRA),

voice pleasantness (VPL), and acceptance (ACC). The “overall impression” rating

uses the ACR scale shown in Table 1.1. The “acceptance” dimension, in turn, uses

a two-point scale (yes/no) and results are reported as a percentage acceptance value.

The scales used for LSE and SRA are reported in Table 1.5 and the remaining four

quality dimensions are reported in Table 1.6.

During the test, subjects are presented with each synthesized speech file twice.

In the first presentation, subjects are asked to solve a secondary task such as answer

specific questions about information contained in the file (e.g., bus number and bus

date/time of departure). Subjects are then asked to judge the quality of the speech

signal based on the aforementioned quality dimensions. The intent of providing a

secondary task is to direct the listeners’ attention to the content of the speech sig-

nal, and not on its surface form alone, so as to improve listener judgement of e.g.,

comprehension problems and listening effort.
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Table 1.5: LSE and SRA rating scales, as described in ITU-T P.85.

Rating LSE a SRA b

5 Complete relaxation possible; no effort required Much faster than preferred
4 Attention necessary; no appreciable effort required Faster than preferred
3 Moderate effort required Preferred
2 Effort required Slower than preferred
1 No meaning understood with any feasible effort Much slower than preferred

aListeners are asked to describe the effort required to understand the message
bListeners are asked to rate the average speed of delivery

Table 1.6: CMP, ART, PRO, and VPL rating scales, as described in ITU-T P.85.

Rating CMP a ART b PRO c VPL d

5 Never Yes, very clear No Very pleasant
4 Rarely Yes, clear enough Yes, but not annoying Pleasant
3 Occasionally Fairly clear Yes, slightly annoying Fair
2 Often No, not very clear Yes, annoying Unpleasant
1 All of the time No, not at all Yes, very annoying Very unpleasant

aListeners are asked to rate if certain words were hard to understand
bListeners are asked if the sounds were distinguishable
cListeners are asked if they noticed any anomalies in pronunciation
dListeners are asked how they would described the pleasantness of the voice
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1.1.3 Conversational Quality Tests

With conversational quality testing, the listeners rate the quality of a call based on

the listening quality and their ability to converse during the call. Conversational tests

take into account echoes and delays as possible degradations of conversational quality.

In conversational tests, listeners are placed into interactive communication scenarios

and asked to complete a task over the phone. An example includes a proof-reading

task in which each subject has a slightly different version of the same text and they

are asked to find the differences [24]. By setting a time limit, the performance of the

system can be measured indirectly based on the outcome of the task.

Moreover, at the end of each conversation, listeners are presented with questions

regarding the quality of the system. One question focuses on the quality of the

connection and the ACR scale shown in Table 1.1 is used. A second question addresses

the difficulty in talking or hearing over the connection; a binary (yes or no) “difficulty”

opinion scale is used in this case. In this scenario, the percentage “difficulty,” or

percentage of listeners who answered that they had difficulty in hearing or talking,

is calculated over all listeners. To avoid confusion, ITU-T Recommendation P.800.1

[15] has introduced the abbreviation “MOS-CQS” to distinguish the mean opinion

scores obtained with subjective conversational quality tests from those obtained via

subjective listening quality (MOS-LQS) tests.

As can be seen, subjective tests have to be conducted following strict guidelines;

such requirements are necessary in order to obtain accurate and repeatable results.

Moreover, in order to reduce the effects of interlistener variability, subjective tests typ-

ically involve over 32 näıve listeners. Studies show that with such a sizeable listener
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panel, the 95% confidence interval of a MOS-LQS test (for a given degradation con-

dition) is approximately 0.1 MOS [25]. In practice, this seldom represents a problem

since even expert listeners would struggle to distinguish differences in quality of this

magnitude in the ACR context [25]. Unfortunately, these requirements make subjec-

tive tests very expensive and time consuming, thus unsuitable for online applications

or for frequent system evaluation, as occurs during the development and fine-tuning of

TTS systems. Today, most of the research on speech quality measurement focuses on

identifying and modeling audible distortions through an objective process. Objective

methods can be implemented by computer programs and can be used in real-time

measurement of speech quality. Objective speech quality measurement is the main

topic of this thesis and special emphasis is placed on objective measures of listening

quality. An overview of existing objective measures is described next.

1.2 Objective Speech Quality Assessment

Objective machine-based quality measurement allows computer programs to auto-

mate speech quality measurement in real-time, making it suitable for field and/or

frequent applications. In fact, objective measurement is the only viable means of

measuring voice quality, for the purpose of real-time call monitoring, on a network-

wide scale. Machine-based algorithms aim to deliver estimated quality scores that

are highly correlated with the quality scores obtained from subjective listening ex-

periments. Objective measurement methods can be classified as either signal-based,

parameter-based, or hybrid signal-and-link-parametric.

Signal-based methods (Fig. 1.1 (a,b)) use perceptual features computed from the

speech signal to estimate subjective quality. Parameter-based methods (Fig. 1.1 (c)),
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Figure 1.1: Block diagram of (a) double-ended and (b) single-ended signal-based
objective measurement, (c) parameter-based measurement, and (d) hybrid signal-
and-link-parametric measurement.

on the other hand, use either system or network parameters to estimate quality. Hy-

brid methodologies (Fig. 1.1 (d)) use both the signal payload and system and/or

network parameters. Current MOS terminology recommends the use of the abbre-

viation MOS-LQO for “objective” listening quality MOS obtained from signal-based

or hybrid models and the abbreviation MOS-LQE for “estimated” planning MOS

obtained by parameter-based models [15]. Similarly, abbreviations MOS-CQO and

MOS-CQE are used for conversational quality.
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1.2.1 Signal-Based Measures

Signal-based quality measurement methods can be further classified as double-ended

or single-ended based on the input information that is required. Double- and single-

ended measurement paradigms are depicted in Fig. 1.1 (a) and (b), respectively.

Double-ended measurement systems are “comparison-based” and depend on some

form of distance metric between two input signals – a reference (clean) and a degraded

speech signal at the output of the system under test – to estimate MOS-LQS. Single-

ended measurement, on the other hand, depends only on the degraded speech signal

and constitutes a more challenging paradigm. Single-ended measures, also commonly

referred to as “blind,” “reference-free,” or “single-input” estimators, are the focus of

this dissertation. These terms will be used interchangeably throughout the remainder

of this thesis. An overview of double- and single-ended measurement methods is

presented next.

1.2.1.1 Double-Ended Algorithms

Double-ended quality measurement has been studied since the early 1980’s [26]. Ear-

lier methods were implemented to assess the quality of waveform-preserving speech

coders; representative measures include signal-to-noise ratio (SNR) and segmental

SNR [27]. More sophisticated measures (e.g., [28]) were proposed once low bitrate

speech coders, which may not preserve the original signal waveform, were introduced.

More recently, quality measurement research has focused on algorithms that exploit

models of human auditory perception. Representative algorithms include Bark spec-

tral distortion (BSD) [29], perceptual speech quality measure (PSQM) [30], measuring

normalizing block (MNB) [31, 32], and statistical model-based quality measurement
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[33–35]. The International Telecommunications Union ITU-T P.862 standard, also

known as perceptual evaluation of speech quality (PESQ), represents the current

state-of-the-art double-ended algorithm [36]. Recent research, however, has suggested

decreased PESQ performance for VoIP communications and algorithm sensitivity to

connection parameters such as speech codec and PLC type, packet size, packet loss

rate, and packet loss pattern (see e.g., [37–39]).

Moreover, double-ended schemes have two underlying requirements: (1) that the

input (reference) signal be of high quality, i.e., clean, and (2) that the output (pro-

cessed) signal be of quality no better than the input. These requirements prohibit

the use of double-ended algorithms in scenarios where the input is degraded and the

system being tested is equipped with a speech enhancement algorithm. Hence, the

use of double-ended measures for modern speech communications is questionable, as

will be emphasized in Chapter 3. In fact, ITU-T Recommendation P.862.3 [40] states

that “the use of PESQ with systems that include noise suppression algorithms is not

recommended.”

The need for a reference signal also compromises the usability of double-ended

systems for quality measurement of synthesized speech, as a “clean” reference signal

may only be existent with corpus-based concatenative systems. With such systems,

signal-based measures have been proposed and focus on computing spectral distances

between the target synthesized speech signal and its original natural speech coun-

terpart (see e.g., [41, 42]). Such measures, however, are only useful if perceptual

degradations are linked to concatenation effects and if a reference natural speech cor-

pus is available; such requirements are not always met in practice [43]. Alternately,

the work described in [44] proposes the use of PESQ for quality estimation. In the
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study, the natural speech signal uttered by the same speaker with which the TTS

corpus was built from is used as a reference signal. While such experiments can be

performed in a controlled laboratory environment, limited usability exists for practical

applications.

1.2.1.2 Single-Ended Algorithms

As opposed to double-ended measurement, single-ended measurement is a more recent

research field. The first signal-based approach proposed in the literature dates back

to 1994 [45]. In this study, comparisons between features of the received speech signal

and vector quantizer codebook representations of the features of clean speech were

used to estimate speech quality. In [46, 47], VQ codebooks were replaced by Gaus-

sian mixture probability models to improve quality measurement performance. Other

proposed schemes have made use of vocal tract models [48] and spectro-temporal rep-

resentations of normative speech behavior [49] for single-ended quality measurement.

ITU-T Recommendation P.563 represents the current state-of-the-art single-ended

algorithm [50, 51]. In this thesis, the performance of the proposed algorithms are

compared to the performance attained with the P.563 algorithm, hence a more de-

tailed description of the algorithm is provided below.

The P.563 algorithm combines three principles, as depicted in Fig. 1.2 [51]. First,

vocal tract and linear prediction (LP) analysis is performed to detect unnaturalness

in the speech signal. The vocal tract is modeled as a series of tubes of different lengths

and time-varying cross-sectional areas. From the speech signal, cross-sectional areas

are evaluated for unnatural behavior. Similarly, higher-order statistics (skewness and

kurtosis), computed for LP coefficients and cepstral coefficients, are investigated to
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Figure 1.2: Schematic representation of ITU-T P.563.a

aFigure taken from [51, 52], with permission from the authors.

see if they lie within the restricted range expected for natural speech. Second, a

pseudo-reference signal is reconstructed by modifying the computed LP coefficients

to fit the vocal tract model of a typical human speaker. The pseudo-reference signal

serves as input, along with the degraded speech signal, to a double-ended algorithm

(similar to ITU-T P.862 [36]) to generate a “basic voice quality” measure. Lastly,

specific distortions such as noise, temporal clippings, and robotization effects (voice

with metallic sounds) are detected.

A total of 51 characteristic signal parameters are calculated. Based on a restricted

set of eight key parameters, one of six major distortion classes is detected. The distor-

tion classes are, in decreasing order of “annoyance”: high level of background noise,

signal interruptions, signal-correlated noise, speech robotization, and unnatural male

and female speech [51]. For each distortion class, a subset of the extracted parameters

is used to compute an intermediate quality rating. Once a major distortion class is

detected, the intermediate score is linearly combined with eleven other parameters to

derive a final quality estimate. While the algorithm is shown to be reliable for many
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telecommunications scenarios, recent research has suggested that P.563 performance

is compromised for VoIP applications [38, 53, 54], noise suppressed speech [55, 56], re-

verberant speech [57], and synthesized speech [52], thus signaling the need for more

accurate single-ended quality meters.

1.2.2 Parameter-Based Measures

For IP networks, parameter-based measures are often termed “link parametric” and

make use of network parameters to estimate listening and/or conversational subjective

quality, as depicted in Fig. 1.1 (c). Commonly used network parameters include codec

and packet loss concealment type, packet loss pattern (random or bursty), packet loss

rate, jitter, and delay. Such parameters are commonly obtained from the real-time

transport protocol (RTP) header [58], real-time transport control protocol (RTCP)

[59], and RTCP extended reports (RTCP-XR) [60].

Link parametric measurement was first proposed in the early 1990’s by the Euro-

pean Telecommunications Standards Institute (ETSI). The ETSI computation model

(so-called E-model) was developed as a network planning tool [61]. In the late 1990’s,

the E-model was standardized by the ITU-T as Recommendation G.107 [62]. Several

enhanced versions of Recommendation G.107 were proposed between 2000-2005 in

order to incorporate more modern transmission scenarios. Today, the E-model is a

widely used transmission planning tool that describes several parametric models of

specific network impairments and their interaction with subjective quality [62]. The

basic assumption is that transmission impairments can be transformed into psycho-

logical impairment factors, which in turn, are additive in the psychoacoustic domain.
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A transmission rating factor R is obtained from the impairment factors by

R = R0 − Is − Id − Ie−eff + A, (1.1)

where Is, Id, and Ie−eff represent speech transmission impairment factors (e.g., im-

pairments due to quantization distortion), delay impairment factors (e.g., impair-

ments due to echoes), and effective equipment impairment factors (e.g., impairments

due to packet loss for different codec types), respectively. R0 describes a base factor

representative of the signal-to-noise ratio and A an advantage (or expectation) factor.

The advantage factor serves as an offset that accounts for user expectations of the

quality of service. As example, for wireline communications, A = 0 is used. In turn,

for satellite communications in remote locations where a minimum of two satellite

hops are warranted, an advantage factor of A = 20 is recommended [62].

The R rating ranges from 0 (bad) to 100 (excellent) and can be mapped to MOS-

CQE (if the delay impairment factor Id is considered) or MOS-LQE using equations

described in ITU-T Recommendation G.107 Annex B [62]. Over the years, an ex-

tensive list of equipment impairment factors has been derived [62–64]. In addition,

ITU-T Recommendations P.833 [65] and P.834 [66] have been proposed to describe

methodologies used to obtain equipment impairment factor values from subjective

tests and instrumental models such as PESQ, respectively.

Recently, methodologies have been proposed to compute equipment impairment

factors for wideband speech codecs [67]. Moreover, as mentioned previously, the

E-model is a transmission planning tool and is not recommended for online quality

measurement. Hence, several extensions have been proposed to improve performance

for online monitoring. It is known, for example, that the simplifying assumption that

impairments are additive in the perceptual domain does not hold true for high levels
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of “orthogonal” (unrelated) impairments. Proprietary algorithms, such as Telchemy’s

VQmon, use nonlinear impairment combination models that are shown to be more

accurate when high levels of dissimilar impairments are present [68].

For concatenative TTS systems, in turn, parameter-based measures are often

termed “system parametric” and make use of TTS system parameters to estimate

quality. A representative measure is described in [69] where an average concatenative

cost function is used to assess the naturalness of the synthesized speech signal. The

measure is derived from the input text and speech corpus and is inversely proportional

to overall quality – the higher the number of concatenations, the lower is the quality.

Parameter-based methods have gained wide popularity due to their reduced com-

putational complexity. As an example, studies have suggested that the E-model (link

parametric) can be up to 1000 times less computationally complex, in terms of mil-

lions of instructions per second, than P.563 (signal-based) [70]. As will be shown

in Chapter 4, the performance of parameter-based methods can be compromised if

signal-based distortions (e.g., temporal clippings) are present since such distortions

are not captured by connection and/or system parameters. These shortcomings mo-

tivate the need for a hybrid signal-and-parameter-based methodology. Previously

proposed hybrid architectures are described next.

1.2.3 Hybrid Measurement - Previous Investigations

Hybrid signal-and-link-parametric measurement methods use link parameters in ad-

dition to the voice payload to estimate subjective quality, as illustrated with Fig. 1.1

(d). A few hybrid approaches have been proposed previously. In [71, 72], PESQ is used

to estimate the quality of the received speech signal and the estimated MOS-LQO is
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converted into an equipment impairment factor which, along with transmission delay

estimates, is input to the E-model. While such approaches are useful to quickly obtain

non-tabulated equipment impairment factors, the high computational complexity, the

need for a clean reference signal, and the sensitivity of PESQ to connection parameters

make them impractical for online quality of service (QoS) control. Moreover, the use

of PESQ for systems equipped with noise suppression algorithms is not recommended

[40], thus limiting its usability for emerging wireless-VoIP communications.

More recently, the work described in [73] proposes a hybrid methodology where

temporal clippings and signal-to-noise ratio (SNR) are estimated from the degraded

speech signal in a single-ended manner using advanced signal processing techniques.

Real-time transport protocol (RTP) and real-time transport control protocol (RTCP)

analysis is used to obtain the packet loss rate. Different impairment models are

computed and combined with the E-model for a final quality rating. The algorithm is

shown to correlate well with PESQ quality scores; however, due to the aforementioned

PESQ limitations with VoIP speech data, it is not obvious if the method accurately

predicts subjective quality. Moreover, the performance and complexity of the hybrid

scheme is not compared to benchmark algorithms such as the E-model and P.563,

thus its improvement over existing algorithms is not clear.

1.3 Motivation and Objectives

In this thesis, we investigate the development of innovative single-ended quality

measures for emerging speech communication applications. Focus is placed on low-

complexity methods that allow for measurement of multiple quality dimensions. Mo-

tivations and objectives for subsequent chapters are detailed below.
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1.3.1 General-Purpose Quality Measurement

General-purpose objective quality measures constitute the perfect candidate for on-

line quality monitoring and control. Single-ended quality “probes” can be distributed

at different points throughout a network to pinpoint locations where different qual-

ity degradations occur, thus allowing for specific corrective measures to be taken.

Moreover, today, speech signals are transmitted over multi-stage hybrid networks

and are exposed to a plethora of different sources of distortion. Such heterogeneous

processing motivates degradation-type identification which enables the deployment of

appropriate corrective measures to assure that QoS remains at acceptable levels.

The objective is to develop techniques to detect and measure multiple distortion

sources such as multiplicative noise and temporal discontinuities. Furthermore, cur-

rent state-of-the-art quality measurement algorithms use complex signal processing

techniques, during online operation, to estimate quality. In order to reduce algo-

rithm computational complexity, we seek an alternate avenue where the majority of

the processing is performed offline. Our objective is to use statistical models of nor-

mative speech behaviour, obtained during offline training, to detect distortions and

to quantify their effects on perceived speech quality. In Chapter 2, Gaussian mixture

statistical models are investigated and key algorithmic operational modules, many of

which are adapted and applied in subsequent chapters, are introduced.

1.3.2 Quality Measurement for Noise-Suppressed Speech

With advances in speech communication technologies, noise suppression has become

essential for applications such as hearing aids, mobile phones, and voice-controlled

systems. Noise suppression, however, can introduce unwanted perceptual artifacts
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such as “musical noise” [20]. Current objective quality measurement algorithms are

shown to perform poorly for noisy speech processed by noise suppression algorithms

[74, 75]. Hence, to date, a generally accepted evaluation metric for noise suppressed

speech is not available. This limitation has motivated the search for quality measure-

ment algorithms that are tuned to noise suppressed speech.

The objective is to develop an algorithm to measure the three quality dimensions

described in [19], namely, signal distortion, background intrusiveness, and overall

quality. Moreover, as emphasized in [76], unwanted noise can be suppressed at three

different stages in the speech transmission chain: prior to speech coding, in the net-

work, or at the decoder. Given the rise in emerging heterogeneous networks and

transcoding scenarios, we seek to develop a distributed quality diagnosis tool that al-

lows for reliable detection of noise suppression processing and for accurate prediction

of noise-suppressed speech quality. Chapter 3 focuses on the development of quality

diagnosis tools for noise suppressed speech signals.

1.3.3 Quality Measurement for Wireless-VoIP Communica-

tions

VoIP has increased in popularity over the past few years, mainly due to its low cost

and capability of integrating data and real-time voice traffic on existing network in-

frastructures. As mentioned previously, with VoIP communications, objective quality

measurement can be performed either on a signal basis or a link parametric basis.

While signal-based algorithms perform well for traditional telephony applications,

algorithm performance has been shown to decrease when applied to VoIP communi-

cations [37, 38, 53, 54]. Link parametric approaches, in turn, can be severely affected
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by distortions that are not captured by connection parameters. Such sensitivity poses

a serious threat to emerging wireless-VoIP communications, which are expected to

become ubiquitous in the near future [4, 5]. With wireless-VoIP, speech signals can

be corrupted by varying levels and types of background noise prior to packetization.

Moreover, in more advanced wireless communications algorithms, noise suppression

artifacts can also be introduced.

The objective here is to develop an algorithm that overcomes the limitations of

both pure signal-based and pure link parametric quality measurement. As such, a

hybrid signal-and-link-parametric approach to single-ended quality measurement of

packet speech is proposed in Chapter 4. The method makes use of IP connection

parameters to determine a base quality representative of the packet transmission

network. Signal-based distortions, resulting from the signal processing in the wireless

communications chain, are then detected and quantified from the speech signal and

used to adjust the base quality accordingly.

1.3.4 Quality Measurement for Hands-Free Communications

With the advances in far-field hands-free communication technologies, signal process-

ing algorithms have been developed to combat unwanted reverberation effects. With

reverberant speech, objective measures computed from the measured room impulse re-

sponse (IR), such as reverberation time (T60) and direct-to-reverberation energy ratio

(DRR), are often used to characterize signal quality. Offline measurement of room

impulse responses, however, is a laborious task. In addition, the impulse response

varies with acoustic source positioning, room temperature, as well as placement of

room furnishings. As a consequence, room acoustical parameters obtained from room
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IR measurements are not feasible for real-time signal processing applications. More-

over, with dereverberated speech, room impulse responses need to be estimated (e.g.,

via blind deconvolution) and often result in poor quality characterization. Derever-

beration algorithms are also known to introduce audible artifacts to the speech signal

and such artifacts are not captured by the estimated room IR. These shortcomings

motivate the need for a signal-based quality measure.

The objective here is two-fold: (1) to develop signal-based measures to “blindly”

characterize room acoustics (e.g., estimate T60 and DRR) and (2) to develop a single-

ended speech quality measure for reverberant and dereverberated speech. With

environment-sensitive systems such as automatic speech/speaker recognition, blind

source separation, and pitch tracking algorithms, signal-based measures can be used

for systematic parameter adaptation to best match room acoustical properties. In

Chapter 5, speech temporal dynamics information is used to characterize room acous-

tical parameters. Objective quality measures are also developed for three quality

dimensions, namely, colouration, reverberation tail effects, and overall quality.

1.3.5 Quality Measurement for Text-to-Speech Systems

Applications involving text-to-speech (TTS) systems are emerging continuously. In

the past, applications served mostly as an aid to the visually impaired. Today, TTS

systems are also being applied in email and short message service readers, automated

directory assistance, foreign language education, and assistive and augmentative com-

munications, to name a few applications. Evaluation of synthesized speech is not an

easy task as various quality dimensions need to be assessed (e.g., naturalness, intel-

ligibility). Moreover, with synthesized speech, clean reference signals are often not
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available, thus limiting the use of double-ended objective quality measures. To date,

a blind perceptual quality estimator for synthesized speech does not exist and the

work described in Chapter 6 attempts to bridge this gap. The goal is to use hidden

Markov models (HMM), trained on naturally produced speech, as artificial reference

models with which synthesized speech signals are assessed. The temporal information

captured by the HMM allows for accurate estimation of several quality dimensions

including overall impression, naturalness and continuity/fluency.

1.4 Thesis Contributions

The aim of this dissertation is to develop objective quality measurement algorithms

for emerging speech communications and applications. The key contributions are:

1. The development of a general-purpose speech quality measurement algorithm

based on statistical models of normative speech behaviour. Innovative methods

to detect and quantify distortions caused by multiplicative noise and temporal

discontinuities are also developed. A slightly modified version of the proposed

temporal discontinuity detection algorithm has since been incorporated into

the ANIQUE+ algorithm developed by Alcatel-Lucent [77, 78]. Moreover, the

multiplicative noise detection/quantification algorithm has been incorporated

into the Deutsche Telekom’s proprietary spoken dialogue evaluation system de-

scribed in [79]. Publications that have resulted from this contribution include

[46, 47, 74, 80–82].

2. The proposal of two objective quality measures for noise-suppressed speech. The

first is a network-distributed measurement algorithm which subsumes current
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single- and double-ended architectures [74]. The approach allows for double-

ended measurement without the need of a clean reference signal. With the

proposed architecture, it is possible to analyze the quality of the system under

test and both quality degradations and quality enhancements can be detected

and handled; such functionality is not available with existing methods. The

second is a single-ended measure and makes use of statistical reference models

of clean, noisy, and noise-suppressed speech [55]. Kullback-Leibler distances,

computed between online trained models and offline obtained reference models,

are proposed as indicators of speech quality. Models are developed for active

and inactive speech segments, thus allowing for measurement of three quality

dimensions, namely, signal distortion, background intrusiveness, and overall

quality. Publications that have resulted from this contribution include [55, 74].

3. Analysis of variance tests are conducted to investigate the performance of cur-

rent state-of-the-art signal-based and link parametric objective measures for

burgeoning wireless-VoIP communications [83]. Signal-based schemes are shown

to be sensitive to VoIP network-related transmission parameters. Link paramet-

ric schemes, in turn, are severely affected by distortions that are not captured

by the connection parameters; representative degradations may include acoustic

background noise, temporal clippings, and noise suppression artifacts. To over-

come this limitation, a hybrid signal-and-link-parametric quality measurement

algorithm is proposed. A codec-integrated methodology is further proposed to

allow for “feature sharing” between the speech codec and the quality measure-

ment algorithm. Under such an integrated configuration, the proposed scheme

has processing time that is approximately 90% lower than that attained with
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the current state-of-the-art single-ended algorithm ITU-T P.563. Publications

that have resulted from this contribution include [53, 84].

4. The proposal of a reverberation-to-speech modulation energy ratio measure for

blind characterization of room acoustics and for single-ended quality measure-

ment of reverberant and dereverberated speech. The proposed measure is com-

puted from a spectro-temporal signal representation where speech and reverber-

ation tail components are shown to be separable [85]. Signal-based estimators

of the room reverberation time and direct-to-reverberation energy ratio param-

eters are devised, the latter being the first of its kind. An adaptive measure

is also introduced and shown to be useful for objective measurement of rever-

berant and dereverberated speech. The proposed measure allows for estimation

of multiple quality dimensions, namely, colouration and reverberation tail ef-

fects, and overall quality. Publications that have resulted from this contribution

include [57, 85, 86].

5. The first steps towards the development of a reference-free objective quality

measure for synthesized speech are taken. Hidden Markov models, trained on

naturally produced speech, serve as artificial text- and speaker-independent ref-

erence models with which synthesized speech signals are assessed. A normalized

log-likelihood measure, computed between perceptual features extracted from

synthesized speech and a gender-dependent reference model, is proposed and

shown to be a reliable measure for multidimensional TTS quality diagnosis.

The proposed measure allows for accurate estimation of quality dimensions la-

beled overall impression, listening effort, naturalness, continuity/fluency, and

acceptance. This contribution has resulted in the publication of [87].
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1.5 Thesis Organization

This thesis is based on a collection of eight manuscripts ([46, 55, 74, 83–87]). Some

minor modifications to the papers are made, mostly to provide common notation and

to remove repetitive introductory material. It is emphasized, however, that there is

still some overlap in content, mostly in the description of the features, the statistical

models, and the performance figures used; this overlap, however, should assist the

reader to follow the development of the thesis. In Chapter 2, the general-purpose

objective quality measurement algorithm is introduced and described. Many of the

components and signal processing modules described in this chapter are modified

and used in subsequent chapters. Chapter 3 focuses on quality measurement of noise

suppressed speech, while hybrid signal-and-link-parametric measurement is addressed

in Chapter 4. Quality measurement for reverberant and dereverberated speech signals

is described in Chapter 5 and for synthesized speech signals in Chapter 6. Lastly,

Chapters 7 and 8 provide a general discussion and the conclusions, respectively.



Chapter 2

General-Purpose Objective Speech

Quality Measurement

2.1 Preamble

This chapter is compiled from material extracted from manuscripts published in the

IEEE Transactions of Audio, Speech, and Language Processing [74] and IEEE Signal

Processing Letters [46]. Earlier versions appeared in the Proceedings of the 2005 and

2006 International Conference on Acoustics, Speech, and Signal Processing [47, 80].

2.2 Introduction

Despite all of the advances in modern telecommunication networks, subjective speech

quality measurement has remained costly and labor intensive. For the purpose of real-

time speech quality measurement on a network-wide scale, low complexity general-

purpose objective speech quality estimation is needed. In this chapter, one such

31
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quality meter is presented. The proposed algorithm is constructed from models of

speech signals, including clean and degraded speech, and speech corrupted by multi-

plicative noise and temporal discontinuities. Machine learning methods are used to

design the models, including Gaussian mixture models, support vector machines, and

random forest classifiers. Estimates of the subjective mean opinion score (MOS-LQS)

generated by the models are combined using hard or soft decisions generated by a

classifier which has learned to match the input signal with the models.

The remainder of this chapter is organized as follows. In Section 2.3, a detailed

description of the single-ended algorithm is given. Algorithm design considerations

are covered in Section 2.4 and algorithm performance is evaluated in Section 2.5.

Conclusions are reported in Section 2.6.

2.3 Overview of the Proposed Algorithm

In the proposed method, single-ended measurement algorithms are designed based on

the architecture depicted in Fig. 2.1. Perceptual features are first extracted from the

test speech signal every 10 milliseconds. The time segmentation module labels the

feature vector of each frame as belonging to one of three possible classes: active-voiced,

active-unvoiced, or inactive (background noise). Signals are then processed by a

multiplicative noise detector. During design, the detector is optimized in conjunction

with the “noise estimation and MOS mapping” and the “consistency calculation and

MOS mapping” modules. A preliminary quality score, namely MOStmp,1, is computed

from the estimated amount of multiplicative noise present in the signal. A second

preliminary score, MOStmp,2, is computed from six consistency measures, which in

turn, are calculated relative to reference models of speech behaviour.



CHAPTER 2. GENERAL-PURPOSE OBJECTIVE MEASUREMENT 33

Consistency

MOS mapping
calculation and

segmentation
Time

Feature 
extraction

MOS mapping
estimation and

Noise 

noise detection
Multiplicative signal

Speech

Fi
na

l M
O

S 
ca

lc
ul

at
io

n

Temporal
discontinuity

detection

M̂OS

MOStmp,1

MOStmp,2

SS

Figure 2.1: Architecture of the proposed general-purpose single-ended measurement
algorithm.

It is noted that MOStmp,1 provides more accurate speech quality estimates, rela-

tive to MOStmp,2, for certain degradation conditions. The objective of the multiplica-

tive noise detector is, thus, to distinguish which conditions can be better represented

by MOStmp,1. Lastly, temporal discontinuities (SS) are detected and a final quality

rating (M̂OS) is computed. The final rating is a linear combination of the prelim-

inary scores adjusted by the negative effects that temporal discontinuities have on

perceived quality. A detailed description of each block is provided in the remainder

of this section. Experimental optimization of algorithm parameters is presented in

Section 2.4.2.

2.3.1 Time Segmentation and Feature Extraction

Time segmentation is employed to separate the speech frames into different classes. It

has been shown that each class exerts different influence on the overall speech quality

[46]. Time segmentation is performed using a voice activity detector (VAD) and a

voicing detector. The VAD identifies each 10-millisecond speech frame as being active

or inactive (background noise). The voicing detector further labels active frames as
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voiced or unvoiced. The VAD from the adaptive multi-rate (AMR) speech codec [88]

(VAD option 1) and the voicing determination algorithm described in [89] are used.

Perceptual linear prediction (PLP) cepstral coefficients [90] serve as primary fea-

tures and are extracted from the speech signal every 10 milliseconds. The coefficients

are obtained from an “auditory spectrum,” constructed to exploit three essential psy-

choacoustic precepts. First, the spectrum of the original signal is warped into the

Bark frequency scale and a critical band masking curve is convolved with the signal.

The signal is then pre-emphasized by a simulated equal-loudness curve to match the

frequency magnitude response of the ear. Lastly, the amplitude is compressed by the

cubic-root to match the nonlinear relation between intensity of sound and perceived

loudness. The auditory spectrum is then approximated by an all-pole autoregres-

sive model, whose coefficients are transformed to P th order PLP cepstral coefficients

x = {xi}P
i=0; the zeroth cepstral coefficient x0 is employed as an energy measure [91].

When describing the PLP vector for a given frame m, the notation xm = {xi,m}P
i=0 is

used. Moreover, the PLP vector averaged over Nf frames (x̄) is given by

x̄ =
1

Nf

Nf∑
m=1

xm. (2.1)

The order of the autoregressive model determines the amount of detail in the

auditory spectrum preserved by the model. Higher order models tend to preserve

more speaker-dependent information and are more complex to calculate. We experi-

ment with 5th and 10th order PLP coefficients. On our databases both models incur

similar quality estimation performance; thus, for the benefit of lower computational

complexity, 5th order PLP coefficients are chosen. Fifth order models have been

successfully used in [45] and are shown in [90] to serve well as speaker-independent

speech spectral parameters. Moreover, dynamic features in the form of delta and
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double-delta coefficients [91] have been shown to indicate the rate of change (speed)

and the acceleration of the spectral components, respectively [92]. As will be shown

in Section 2.3.4, the delta information for the zeroth PLP cepstral coefficient can be

used to detect temporal discontinuities.

Lastly, the mean cepstral deviation (σ̄) of a test signal is computed. In Sec-

tion 2.3.2, it will be shown that σ̄ can be used to detect and estimate the amount of

multiplicative noise. The mean cepstral deviation is the average of all “per-frame”

deviations (σm) of the PLP cepstral coefficients (excluding the zeroth coefficient).

The per-frame deviation is defined as

σm =

√√√√ 1

P − 1

P∑
i=1

(
xi,m −

( 1

P

P∑
j=1

xj,m

))2

(2.2)

and P = 5.

2.3.2 Detecting and Estimating Multiplicative Noise

It is known that multiplicative noise (also known as speech-correlated noise) can be

introduced by logarithmically companded PCM (e.g., G.711) or ADPCM (e.g., G.726)

systems as well as by other waveform speech coders [93]. In fact, the modulated

noise reference unit (MNRU) [94] was originally devised to reproduce the perceptual

distortion of log-PCM waveform coding techniques. MNRU systems produce speech

that is corrupted by controlled speech-amplitude-correlated noise. The speech plus

multiplicative noise output, yMNRU(n), of an MNRU system is given by

yMNRU(n) = v(n) + v(n)10−Q/20N(n), (2.3)

where v(n) is the clean speech signal and N(n) is white Gaussian noise (unit variance).

The amount of multiplicative noise, v(n)10−Q/20N(n), is controlled by the parameter
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Q, which represents the ratio of input speech power to multiplicative noise power,

and is expressed in decibels (dB). This parameter is often termed the “Q value”.

Measuring multiplicative noise of the form (2.3), when both the clean signal and

the degraded speech signals are available, is fairly straightforward. The task becomes

more challenging when the original clean signal is unavailable. In such instances, Q

must be estimated. To the best of our knowledge, the scheme presented in [50] is

the only published method of estimating multiplicative noise using only the degraded

speech signal. The process entails an evaluation of the spectral statistics of the signal

during active speech periods.

Today, MNRU degradations and reference waveform codecs such as G.711 and

G.726 are used extensively as “anchor” conditions in testing and standardization

of emerging codec technologies and in network planning. Current speech quality

measurement algorithms should handle such degradation conditions efficiently. In

previous work [80], estimating multiplicative noise is shown to be beneficial for GMM-

based speech quality measurement. A multiplicative noise estimator, similar to the

one described in [50], was deployed and performance improvement was reported for

MNRU degradations. This improvement in performance substantiates the need for

an efficient method of estimating multiplicative noise. Here, an innovative and simple

technique is employed.

The technique is based on PLP coefficients and their mean cepstral deviations.

As discussed in [95], the multiplicative noise term in (2.3) introduces a fairly flat

noise floor in regions of the spectrum of yMNRU(n) where the power of v(n) is small.

On the other hand, in regions where the power of the input signal is sufficiently

large, the spectrum of v(n) is almost perfectly preserved (see examples in [95]). The
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Figure 2.2: Spectrum of a speech frame (a) before processing, and after (b) 25 dB
MNRU and (c) 5 dB MNRU processing. The x-axis represents frequencies in Hz and
the y-axis amplitudes in dB.

amount of multiplicative noise is controlled by the parameter Q. As a result, as

Q approaches 0 dB (i.e., power of multiplicative noise equals the power of input

speech), the flat spectral characteristic of the multiplicative noise starts to dominate

the spectrum of yMNRU(n). In such instances, information about the spectral envelope

of the signal is lost, deteriorating the quality and intelligibility of the signal. To

illustrate this behavior, Fig. 2.2 (a)-(c) shows the spectrum of a speech frame prior to

processing and after MNRU degradation with Q = 25dB, and Q = 5dB, respectively.

As can be clearly seen, the spectrum of yMNRU(n) becomes flatter as the amount of

multiplicative noise increases (i.e., as Q decreases).

The use of mean cepstral deviation as a measure of the amount of multiplica-

tive noise present in a signal is inspired by the definition of cepstrum – the inverse

Fourier transform of the log-spectrum of a signal [91]. Tests on our databases show

that the cepstral deviation for MNRU speech correlates well with the flatness of the
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log-spectrum, i.e., with the amount of multiplicative noise. As an example, a correla-

tion of -0.93 is attained between the mean cepstral deviation of active speech frames

(σ̄active) and Q values for MNRU-degraded speech files on our speech databases. Neg-

ative correlation is expected since lower Q values result in flatter spectra. In turn,

spectrum and cepstrum are related via a Fourier transformation, thus a flat spec-

trum translates into a non-flat cepstrum, i.e., a high σ̄active. Once Q is estimated,

MOStmp,1 can be computed via simple regression. In fact, a polynomial mapping

can be employed directly between σ̄active and MOStmp,1. As will be shown in Sec-

tion 2.4.2, MOStmp,1 provides accurate estimates of perceived subjective quality for

various different degradation conditions, in addition to corruption by MNRU multi-

plicative noise.

In this chapter, the detection of the presence of high levels of multiplicative noise

is treated as a supervised classification problem. In fact, the detector is trained to

detect not only multiplicative noise, but also all other degradation conditions where

MOStmp,1 is better than MOStmp,2 as an estimator of MOS-LQS (some example con-

ditions are given in Section 2.4.2.3). Detection is performed on a “per-signal” basis

and depends on a 14-dimensional input consisting of the PLP vector averaged over

active frames (x̄active) and over inactive frames (x̄inactive), and the mean cepstral devi-

ation for active frames (σ̄active) and for inactive frames (σ̄inactive). Inactive frames are

used as they provide cues for discriminating additive background noise from speech-

correlated noise. Experiments are carried out with support vector classifiers (SVC)

[96], classification and regression trees (CART) [97], and random forest classifiers

(RFC) [98] as candidate detectors. Training of the detectors will be described in

more detail in Section 2.4.2.3.
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2.3.3 GMMs, Consistency Calculation and MOS Mapping

Gaussian mixture models (GMMs) are used to model the PLP cepstral coefficients

of each of the three classes of speech frames – voiced, unvoiced, and inactive. A

Gaussian mixture density is a weighted sum of M component densities

p(u|λ) =
M∑
i=1

αibi(u), (2.4)

where αi ≥ 0, i = 1, ..., M are the mixture weights, with
∑M

i=1 αi = 1, and bi(u)

are K-variate Gaussian densities with mean vector µi and covariance matrix Σi.

The parameter list, λ={λ1, . . . , λM}, defines a particular Gaussian mixture density,

where λi = {µi, Σi, αi}. The well-known expectation-maximization (EM) algorithm

[99] is used to iteratively estimate λ from training data.

In pilot experiments it has been found that accuracy can be enhanced if the

algorithm is also equipped with information regarding the behavior of speech de-

graded by different transmission and coding schemes [80]. To this end, clean speech

signals are used to train three different Gaussian mixture densities, pclean,class(u|λ).

The subscript “class” represents either voiced, unvoiced, or inactive frames. For the

degradation model, pdegraded,class(u|λ) are trained.

For the benefit of low computational complexity, we make a simplifying assump-

tion that vectors between frames are independent. This assumption has been shown

in [46] to provide accurate speech quality estimates. Nonetheless, improved perfor-

mance is expected from more sophisticated models, such as hidden Markov models,

where statistical dependencies between frames can be considered. This investigation,

however, is left for future study. Thus, for a given speech signal, the consistency
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between the observation and the models is defined as the normalized (log-)likelihood

cmodel,class(Xclass) =
1

Nclass

Nclass∑
j=1

log(pmodel,class(xclass,j|λ)) (2.5)

where Xclass = {xclass,i}Nclass
i=1 denotes the set of all Nclass PLP vectors that have been

classified as belonging to a given speech class. The subscript “model” represents

either the clean or the degradation reference model. Normalization is required as

Nclass varies for different test signals.

In total, six consistency measures are calculated per test signal. For each class,

the product of the consistency measure (2.5) and the fraction of frames of that class

in the speech signal is computed; this product is referred to as a “feature.” In the rare

case when the fraction of frames of a specific class is zero (e.g., only voiced speech

is detected), a constant cmodel,class = c = −15 is used as the feature. Lastly, the six

features are mapped to MOStmp,2. We experiment with multivariate polynomial

regression and multivariate adaptive regression spline (MARS) [100] as candidate

mapping functions. With MARS, the mapping is constructed as a weighted sum

of truncated linear functions (see [33] for more detail). On our databases, MARS

is shown to provide superior performance. MARS models are designed based on the

MOS-LQS of degraded speech. Simulation results show that a simple MARS function

composed of a linear combination of 18 truncated linear functions provides accurate

quality estimation performance. The experimental results presented in Section 2.5

make use of a MARS model to map the 6-dimensional consistency feature vector,

calculated on a per-signal basis, into MOStmp,2.
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2.3.4 Temporal Discontinuity Detection

Motivated by the results reported in [101] and by first and second order methods

used for edge detection in images (e.g., [102, 103]), we employ delta and double-delta

coefficients for temporal discontinuity detection. Delta coefficients represent the local

time derivatives (slope) of the cepstral sequence and are computed according to

∆xm =
L∑

l=−L

l xm+l, (2.6)

where the normalization factor
∑L

l=−L l2 is omitted as it does not affect the simulation

results. Delta coefficients indicate the rate of change (speed) of spectral components;

in our simulations L = 5 is used. Double-delta coefficients are the second-order local

time derivatives of the cepstral sequence and are computed according to

∆2xm =
N∑

n=−N

n∆xm+n. (2.7)

Double-delta coefficients indicate the acceleration of the spectral components; in our

simulations N = 3 is used.

As mentioned in Section 2.3.1, the zeroth PLP cepstral coefficient is used as an

energy term. The delta and double-delta features, calculated from x0, provide insight

into the dynamics of the signal energy. The main assumption used here is that

for natural speech, abrupt changes in signal energy do not occur. The two main

temporal impairments that should be detected are abrupt starts and abrupt stops

[49]. In abrupt starts, the signal energy, its rate of change, and acceleration increase

abruptly. The opposite occurs with abrupt stops. This behavior is illustrated with

Figs. 2.3 and 2.4. In Fig. 2.3 (a)-(d), the waveform of a speech signal, the energy, and

energy rate of change (termed ∆0 for simplicity) and acceleration (termed ∆2
0) are
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Figure 2.3: Analysis of a signal’s (a) waveform, (b) x0, (c) ∆0, and (d) ∆2
0. Signal

consists of five vowels uttered in a noisy office environment.

depicted, respectively. The signal consists of five vowels uttered by a male speaker in a

noisy office environment. Vowels are chosen as their extremities are often erroneously

detected as abrupt starts or stops. Notice the subtle spikes in ∆0 and ∆2
0 at each vowel

extremity. In Fig. 2.4, temporal discontinuities, or “clippings,” have been introduced

at the beginning or at the end of each vowel. The abrupt starts and stops are indicated

with arrows. Notice that the unnatural changes cause abnormal spikes in ∆0 and ∆2
0.

To detect abrupt starts or stops, two steps are required. First, the energy of frame

at time tc is compared to the energy of frame tc+τ . If the energy increase (or decrease)

surpasses a certain threshold T , then a candidate abrupt start (or stop) is detected.

The parameters T and τ are optimized on our training database, as described in

Section 2.4.2.4. Once a candidate discontinuity is detected, a support vector classifier

is used to decide whether in fact a temporal discontinuity has occurred. The SVC
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Figure 2.4: Analysis of a “clipped” signal’s (a) waveform, (b) x0, (c) ∆0, and (d) ∆2
0.

Abrupt starts and stops are indicated with arrows.

is only invoked at candidate discontinuities in order to reduce the computational

complexity of the algorithm. Here, two SVCs are used: one tests for abrupt starts

(given a sudden increase in x0) and the other for abrupt stops (given a sudden decrease

in x0). Input features to the SVC are ∆0 and ∆2
0 for the τ + F frames preceding tc

and the τ +F frames succeeding tc. The parameter F is empirically set to 2, resulting

in a 10-dimensional input feature vector. The output of each classifier is one of two

possible classes, namely, “discontinuity” or “non-discontinuity.” We experiment with

linear, polynomial and radial basis function (RBF) support vector classifiers; on our

databases, an RBF SVC attained superior performance.

The output SS of the temporal discontinuity detection block, as depicted in

Fig. 2.1, is a (nb + ns + 2)-dimensional vector comprised of the number of detected
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abrupt starts (nb) and abrupt stops (ns) and the approximate time at which each dis-

continuity occurs. As an example, suppose for a given speech file three abrupt starts

are detected at times tb = {tb1, tb2, tb3} and two abrupt stops at times ts = {ts1, ts2}.
The resulting parameter SS is represented by SS = {nb, tb, ns, ts}.

2.3.5 Final MOS Calculation

The final MOS-LQO calculation is based on a linear combination of the intermediate

MOSs, adjusted by the negative effects temporal discontinuities have on perceived

quality, i.e.,

M̂OS = pmMOStmp,1 + (1− pm)MOStmp,2 − C(SS). (2.8)

Here, pm is the probability that MOStmp,1 is better than MOStmp,2 as an estimator of

MOS-LQS. This statistic is calculated by the detector on a “per-signal” basis. More

detail regarding the computation of pm is given in Section 2.4.2.5.

The term C(SS) resembles the effects temporal discontinuities have on perceived

quality. Experiments, such as [104], suggest that humans can perform continuous

assessment of time-varying speech quality. It is also noted that the location of a

discontinuity within a signal can affect the listener’s perception of quality; this short-

term memory effect is termed “the recency effect.” Impairments detected at the end

of the signal have more negative effect on the perceived quality than impairments

detected at the beginning. In [49], a decay model is used to emulate the recency

effect. More recently, however, experiments carried out in [105] suggest that the

recency effect is harder to observe in speech signals of short time duration. Instead, a

“subconscious integration” is performed where unconsciously, multiple degradations

are combined and reported as a single level of speech quality.
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Since the files in our databases are of short time durations (on average 8 seconds)

we do not consider the recency effect and model C(SS) as

C(SS) = C(nb, ns) = nbKb + nsKs (2.9)

where Kb and Ks are penalty terms for the detected abrupt starts and stops, respec-

tively. These constants are optimized on the training databases, as will be discussed

in Section 2.4.2.5. In this chapter, since the recency effect is not considered, ts and

tb are not computed. Nevertheless, for longer speech files, (2.9) can be modified to

incorporate such temporal information; in particular, a decay model can be employed.

2.4 Algorithm Design Considerations

In this section, algorithm design considerations are described in detail.

2.4.1 Database Description

In total, 20 MOS-LQS labeled databases are used in our experiments. The speech

databases are described in Table 2.1. We separate fourteen databases for training

(databases 1-14) and the remaining six are used for testing (databases 15-20). Addi-

tionally, during training several algorithm parameters need to be optimized. To this

end, 20% of the training set is randomly chosen to be used for parameter validation;

henceforth, this subset will be referred to as the “validation set.” Parameter calibra-

tion is discussed in further detail in Section 2.4.2. The content of each database is

described next.
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Table 2.1: Properties of speech databases used in our experiments.

No. of No. of
Database Language Files Conditions Training Testing

1 French 176 44 X
2 Japanese 176 44 X
3 English 176 44 X
4 French 200 50 X
5 Italian 200 50 X
6 Japanese 200 50 X
7 English 200 50 X
8 English 96 24 X
9 English 96 24 X
10 English 240 60 X
11 Italian 2440 20 X
12 Japanese 2440 20 X
13 English 2440 20 X
14 English 2088 46 X
15 English 3072 48 X
16 English 3072 48 X
17 English 3072 48 X
18 English 3328 52 X
19 English 96 24 X
20 English 448 28 X
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Databases 1-7 are the ITU-T P-series Supplement 23 (Experiments 1 and 3) mul-

tilingual databases [106]. The three databases in Experiment 1 have speech pro-

cessed by various codecs (G.726, G.728, G.729, GSM-FR, IS-54 and JDC-HR), singly

or in different cross-tandem configurations (e.g., G.729–G.728–GSM-FR). The four

databases in Experiment 3 contain single- and multiple-encoded G.729 speech under

various channel error conditions (0-10% bit error rate and 0-5% random and burst

frame erasure rate) and input noise conditions (clean, vehicle, street, and hoth noises).

Databases 8 and 9 are two wireless databases with speech processed, respectively,

by the IS-96A and IS-127 EVRC (Enhanced Variable Rate Codec) codecs under

various channel error conditions (forward and reverse 3% frame erasure rate) with or

without the G.728 codec in tandem. Database 10 is a mixed wireless-wireline database

with speech under a wide range of degradation conditions – tandemings, channel

errors, temporal clippings, and amplitude variations. A more detailed description

of the conditions in database 10 can be found in [107]. Databases 11-13 comprise

speech coded using the G.711, G.726 and the G.728 speech coders, alone and in

various different tandem configurations. Database 14 has speech from standard speech

coders (G.711, G.726, G.728, G.729, and G.723.1), under various channel degradation

conditions (clean, 0.01% bit error rate, and 1-3% frame erasure rate).

Databases 15-17 comprise speech coded with the 3GPP2 Selectable Mode Vocoder

(SMV) under different tandeming, channel impairments, and environment noise degra-

dation conditions. Database 18 has speech from standard speech coders (G.711,

G.726, G.728, G.729E, and GSM-EFR) and speech processed by a cable VoIP speech

coder, under various channel degradation conditions. Lastly, databases 19 and 20

have speech recorded from an actual telephone connection in the San Francisco area
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and live network speech samples collected from AMPS, TDMA, CDMA, and IS-136

forward and reverse links. In all databases described above, speech degraded by

different levels of MNRU is also included.

Speech files from databases 15-20 are used solely for testing and are unseen to the

algorithm. Databases 15-18 are kept for testing as they provide speech files coded

using newer codecs than the codecs represented in the training datasets. Evaluation

using these databases demonstrates the applicability of the proposed algorithm to

emerging codec technologies. Database 19 has speech files that are composed of two

spoken utterances, one by a male speaker and the other by a female speaker, thus

are regarded as being composite male-female signals. Although this is not common

in listening tests, we are interested in seeing how robust the proposed algorithm is

to speaker and gender changes. Furthermore, database 20 is composed of speech files

that have been processed by older wireless codecs. Many of the files in this database

are of poor speech quality (MOS < 2) and comprise degradation conditions not

represented in the training datasets.

2.4.2 Algorithm Parameter Calibration

In order to optimize algorithm parameters, preliminary “calibration” experiments

are carried out. In the sequel, we describe the steps taken to calibrate each of the

processing blocks depicted in Fig. 2.1.

2.4.2.1 Multiplicative Noise Estimation and MOS Mapping

For optimization of the multiplicative noise estimator, MNRU degraded training files

are used. Experiments are carried out with 2nd and 3rd order polynomial mappings
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between σ̄active and the Q value. On the validation set, the latter presented better per-

formance. The estimated amount of multiplicative noise achieved a 0.92 correlation

with the true Q value. For comparison, the multiplicative noise estimator described in

[50] resulted in a correlation of 0.66. For the noise-to-MOS mapping, it is found that

a simple linear regression between the estimated amount of multiplicative noise and

MOStmp,1 suffices. The two mappings are replaced by one single 3rd order polynomial

mapping between σ̄active and MOStmp,1. A 0.95 correlation between MOStmp,1 and

the true MOS-LQS is attained for MNRU validation files.

2.4.2.2 Consistency Calculation

To calibrate the consistency calculation block, an effective combination of GMM con-

figuration parameters (M and covariance matrix type) needs to be found. For voiced

and unvoiced frames we experiment with diagonal matrices and M=8, 16, or 32, and

M=2, 3, or 5 for full covariance matrices. For inactive frames, we only experiment

with diagonal matrices and M=2, 3, or 6. The calibration experiment suggests the

use of 3 full GMM components for voiced frames and 32 diagonal components for

unvoiced frames, for both the clean and the degradation model. For inactive frames,

6 diagonal components are needed for the degradation model and 3 for the clean

model. This is consistent with the fact that for clean speech, inactive frames have

virtually no signal energy and fewer Gaussian components are required.

The consistency-to-MOS mapping is designed using a MARS regression function

with parameters optimized using degraded MOS-LQS labeled training files. The

function maps the six consistency measures into MOStmp,2. As mentioned previously,

the designed MARS regression function is composed of a simple weighted sum of 18
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truncated linear functions. The mapping is performed once per speech signal and

incurs negligible computational complexity (approximately 18 scalar multiplications

and 54 scalar additions). For files in the validation set, a 0.82 correlation is attained

between MOStmp,2 and the actual MOS-LQS; if MNRU degraded files are removed,

the correlation increases to 0.86. This result suggests that a combination of MOStmp,1

and MOStmp,2 may lead to better performance when compared to using MOStmp,2

alone.

2.4.2.3 Multiplicative Noise Detection

The multiplicative noise detector is optimized to select the best preliminary quality

score, MOStmp,1 or MOStmp,2, for a given test signal. To gain a sense of which

conditions are best represented by each preliminary score, tests are performed on the

training set where the true MOS-LQS is known. As expected, of 288 files processed

by the G.711 and G.726 codecs, 252 are better represented by MOStmp,1. Similarly,

of 252 MNRU-degraded files with 0 dB< Q < 35 dB, 209 are better represented by

MOStmp,1. If only files with Q < 20 dB are considered, 103 (out of 108) are better

estimated by MOStmp,1. The primary objective of the detector, thus, is to detect

signals corrupted by high levels of multiplicative noise.

Nonetheless, for some degradation conditions other than multiplicative noise con-

ditions, MOStmp,1 is also shown to be a better estimator of MOS-LQS than MOStmp,2.

Some examples include speech signals processed by low bitrate vocoders (e.g., G.723.1

at 5.3 kbit/s), where the quality of five (out of 32) of the signals is better represented

by MOStmp,1. Moreover, of 112 samples processed by medium bitrate codecs (e.g.,

G.729E at 11.8 kbit/s), the quality of 22 signals is better estimated by MOStmp,1
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than by MOStmp,2. As a consequence, in instances where high levels of multiplicative

noise are not detected, the classifier learns which temporary score results in the best

estimation performance.

To calibrate the detector, first, all training samples are processed by the top and

middle branches depicted in the block diagram in Fig. 2.1. The estimated preliminary

MOSs are compared to the true MOS-LQS and all samples in which the top branch

achieved the smallest estimation error receive a label “TOP”; otherwise a label “MID”

is assigned. This new labeled training set determines which preliminary score best

estimates the true MOS-LQS for a given speech signal and is used to train the detector.

The detector can be designed to operate in two different modes: hard-decision or

soft-decision. In hard-decision mode, the detector selects the single best preliminary

quality score and pm ∈ {0, 1} is used in (2.8). With this mode only one preliminary

score needs to be computed. On the contrary, soft-decision detection requires that

both preliminary scores be estimated, and a “weight” is assigned to each score. The

weight (0 ≤ pm ≤ 1) is computed by the detector on a “per-signal” basis and reflects

the probability of MOStmp,1 more accurately predicting MOS-LQS than MOStmp,2.

The term pm resembles the likelihood of the presence of high levels of multiplicative

noise in the signal. After detector optimization, signals in the validation set with

high levels of multiplicative noise have pm that approach unity.

We experiment with three different candidate classifiers: CART, SVC and RFC.

The classifiers are trained using the aforementioned labeled training set. An RFC is an

ensemble of unpruned decision trees induced from bootstrap samples of the training

data. The final class decision is based on a majority vote from all individual trees

(see [98] for more details regarding random forest classifiers). On our validation set,
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an RFC with 500 trees achieved the best classification performance; all files with high

levels of multiplicative noise (e.g., MNRU with Q < 12 dB) were correctly detected.

2.4.2.4 Temporal Discontinuity Detection

Calibrating the temporal discontinuity detector encompasses the determination of

parameters T and τ , and training of the support vector classifiers. On our data

it was found that if the values of x0 doubled (or halved) within 20-50 milliseconds

a candidate discontinuity could be detected. With these possible values of τ , the

SVCs correctly identified all abrupt stops and starts on the validation dataset. In

an attempt to reduce the number of times the SVCs are executed, a more stringent

threshold, τ = 2 (equivalent to 20 milliseconds), is used.

2.4.2.5 Final MOS Calculation

Lastly, the parameters in (2.8) are optimized. Initially, C(SS) = 0 is assumed and we

experiment with hard-decision detection and soft-decision detection. On the valida-

tion set, soft-decision detection resulted in superior performance. With soft-decision

detection, pm is computed by the RFC and represents the fraction of the 500 indi-

vidual decision trees that have selected MOStmp,1 as the best estimator of subjective

quality. Once the soft-decision mode is set, the parameters Kb and Ks in (2.9) are

estimated by minimizing the squared error between (2.8) and the true MOS-LQS for

“clipped” training signals. On our data, Kb = 0.09 and Ks = 0.13 were found. These

parameters are consistent with [49], where it is argued that the abrupt stops have,

intuitively, a more significant impact on perceived speech quality relative to abrupt

starts.
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2.5 Test Results

In this section we compare the proposed algorithm to P.563 using the test databases

described in Section 2.4.1. The performance of the algorithms is assessed by the

Pearson correlation (R) between the N MOS-LQS (wi) and MOS-LQO (yi) samples,

R =

∑N
i=1(wi − w̄)(yi − ȳ)√∑N

i=1(wi − w̄)2
∑N

i=1(yi − ȳ)2

, (2.10)

where w̄ is the average of wi, and ȳ is the average of yi. MOS measurement accuracy

is assessed using the root-mean-square error (RMSE),

RMSE =

√∑N
i=1(wi − yi)2

N
. (2.11)

Table 2.2 presents “per-condition” R and RMSE between condition-averaged

MOS-LQS and condition-averaged MOS-LQO, for each of the test datasets. The

results are obtained after an individual 3rd order monotonic polynomial regression

for each dataset, as recommended in [50]. The column labeled “%R ↑” lists the

percentage “R-improvement” obtained by using the proposed GMM-based method

over P.563. The R-improvement is given by

%R ↑= RGMM −RP.563

1−RP.563

× 100% (2.12)

and indicates percentage reduction of P.563’s performance gap to perfect correla-

tion. The column labeled “%RMSE” lists percentage reduction in RMSE, relative

to P.563, by using the proposed scheme. As can be seen, the proposed algorithm

outperforms P.563 on all test databases. An average R-improvement of 44% and an

average reduction in RMSE of 17% is attained.

An interesting result is obtained with database 19. Recall that this database had

MOS-LQS labeled speech signals composed of two utterances, one spoken by a male
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Table 2.2: Performance comparison on unseen test datasets. Results are per-condition
after 3rd order polynomial regression.

Test P.563 Proposed
Database

R RMSE R %R ↑ RMSE %RMSE

15 0.863 0.253 0.908 32.8 0.206 18.6
16 0.835 0.274 0.864 17.6 0.249 9.1
17 0.748 0.273 0.868 47.6 0.212 22.3
18 0.916 0.218 0.939 27.4 0.187 14.2
19 0.421 0.456 0.868 77.2 0.455 0.2
20 0.758 0.569 0.909 62.4 0.362 36.4

Average – – – 44.2 – 16.8

speaker and the other by a female speaker. On this database, P.563 achieves a poor

correlation of 0.421. In fact, before applying the 3rd order monotonic polynomial

mapping, P.563 achieves a very poor R = 0.121. This may be due to the fact that

P.563 depends on vocal tract analysis to test for unnaturalness of speech. By rating

the unnaturalness of speech separately for male and female voices, P.563 is compro-

mised for composite male-female signals. As a sanity check, we test the performance

of PESQ (with the mapping described in [108]) and an R = 0.974 and RMSE = 0.422

is attained.

The plots in Fig. 2.5 show MOS-LQO versus MOS-LQS for the proposed algorithm

and for P.563. Each data point represents one of the 332 different degradation con-

ditions available in the test databases. In these plots and in the performance figures

described below the composite male-female quality estimates are left out. Plots (a)

and (b) illustrate the relationship between GMM MOS-LQO and MOS-LQS, before

and after 3rd order monotonic polynomial regression (optimized on each test dataset),

respectively. Prior to polynomial mapping, an overall R = 0.874 and RMSE = 0.321
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Figure 2.5: Per-condition MOS-LQO versus MOS-LQS for (a) proposed algorithm
prior to and (b) after 3rd order monotonic polynomial mapping, and for (c) P.563
before and (d) after the polynomial mapping.

is attained; after the mapping, R = 0.918 and RMSE = 0.221. Similarly, plots (c)

and (d) illustrate the relationship between P.563 MOS-LQO and MOS-LQS, before

and after the monotonic mapping. An overall R = 0.7281 and RMSE = 0.391 is

attained prior to regression; after regression R = 0.853 and RMSE = 0.292.

The 3rd order monotonic polynomial regression is suggested in [50] in order to map

the objective score onto the subjective scale. This mapping is used to compensate

for variations of the MOS-LQS scale across different subjective tests, variations due

to different voter groups, languages, contexts, amongst other factors. Monotonic
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mappings perform scale adjustments but do not alter the ranking of the objective

scores. Ultimately, the goal in objective quality estimation is to design algorithms

whose quality scores rank similarly to subjective quality scores. This is due to the

fact that objective scores that offer good ranking performance produce accurate MOS-

LQS estimates, given a suitable monotonic mapping is used for scale adjustment. To

this end, we use rank-order correlations as an additional figure of merit of algorithm

performance. Rank-order correlations are calculated using (2.10), with the original

data values replaced by the ranks of the data values; this measure is often termed

Spearman’s rank correlation coefficient (RS). For P.563, a “per-condition” RS = 0.705

is attained on the test data. The proposed algorithm achieves RS = 0.793, a 30%

R-improvement. The results presented above, for all three performance measures,

suggest that the proposed algorithm provides more accurate estimates of subjective

quality relative to the current state-of-the-art P.563 algorithm.

2.6 Conclusions

This chapter has described the development of a general-purpose single-ended speech

quality estimation algorithm. The algorithm employs speech signal models designed

using machine learning methods. Innovative methods to detect and quantify multi-

plicative noise and temporal distortions are described. Comparisons with the current

state-of-the-art P.563 algorithm demonstrate the efficacy of the algorithm and its po-

tential for providing more accurate quality measurements. The GMM-based quality

measurement paradigm and the algorithmic signal processing modules described in

this chapter serve as the foundation for many of the algorithms proposed in subse-

quent chapters.



Chapter 3

Quality Measurement for Noise-

Suppressed Speech

3.1 Preamble

This chapter is compiled from material extracted from manuscripts published in the

IEEE Transactions of Audio, Speech, and Language Processing [74] and the Journal

of Multimedia [55].

3.2 Introduction

With the advances in speech communication technologies, noise suppression has

become essential for applications such as hearing aids, mobile phones, and voice-

controlled systems. In the past, various double-ended measures were proposed to

characterize the performance of noise suppression algorithms (e.g., see [109]). Such

measures, however, did not take into account human perceptual characteristics, thus,

57
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did not correlate well with subjective quality. More recently, widely used double-

ended objective measures were tested as quality estimators of noise suppressed speech

[75, 110, 111]; low correlations with subjective quality were reported for most mea-

sures. Included in the measures was the current state-of-the-art double-ended ITU-T

PESQ algorithm. In fact, to date the only blind estimator suitable for noise sup-

pressed speech is the ITU-T standard algorithm P.563 [50]. Experiments described

herein, however, suggest that low correlations are attained with subjective quality

[74]; results reported in [56] corroborate such findings. In this chapter, two methods

are proposed for reliable objective quality measurement of noise suppressed speech

(Sections 3.3-3.4); conclusions are presented in Section 3.5.

The first method subsumes both single-ended and double-ended quality measure-

ment paradigms. Single-ended quality probes are distributed along the transmission

chain and used to detect where in the network noise suppression is performed. Side

information, sent from probes situated in the chain prior to and post noise suppres-

sion, is used by a quality diagnosis module to characterize the performance of the

noise suppression algorithm. Moreover, once noise suppression is detected, multiple

quality dimensions – signal distortion, background intrusiveness, and overall quality

– are blindly estimated. The proposed architecture allows for both quality degrada-

tions and quality enhancements to be detected and handled, a functionality that is

not available with existing double- or single-ended algorithms. The second method

allows for low complexity blind estimation of perceptual quality and is based on statis-

tical reference models of clean, noisy, and noise-suppressed speech. Kullback-Leibler

distances, computed between online trained models and offline obtained reference

models, are used as indicators of multiple speech quality dimensions.
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3.3 Distributed Quality Measurement

Existing single- and double-ended algorithms are only capable of estimating the qual-

ity of the received signal per se. In order to analyze the quality of a transmission

system, assumptions on the input signal are needed. As mentioned in Section 1.2.1.1,

double-ended algorithms presuppose that the input is undistorted. Moreover, it is as-

sumed that the output is of quality no better than the input. Current double-ended

algorithms would fail if any of these assumptions were to fail.

A scenario where both assumptions are not met can be seen in Fig. 3.1 where

a clean signal xclean suffers impairments that degrade speech quality. Common im-

pairments may include interference on an analog access network, environment noise,

noise introduced by equipment within the network, and lost packets in a VoIP net-

work. The noisy signal xnoisy is then input to a speech enhancement system and the

enhanced output xenhance is of quality better than xnoisy. Such a system configuration

commonly occurs when using a noise reduction algorithm to enhance speech. As will

be shown in Section 3.3.2.2, the performance of current double-ended schemes may

be compromised when only xnoisy and xenhance are made available to the algorithm.

3.3.1 Measurement Configuration

The objective is to devise a measurement scheme that subsumes current single- and

double-ended measurement architectures. The approach allows for double-ended mea-

surement without the underlying assumptions that the input signal needs to be clean

and that the output needs to be of quality better than the input. With the proposed

architecture, it is possible to analyze the quality of the system under test and both

quality degradations and quality enhancements can be detected and handled. This
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Figure 3.1: Block diagram of a speech enhancement system.

section will give emphasis to quality enhancements, in particular to noise suppression.

The proposed architecture is depicted in Fig. 3.2. The conventional double-ended

algorithm is replaced by two single-ended schemes, one at the input and another at the

output of the system being tested, and a system diagnosis tool. This configuration

requires access to the output signal and to information extracted from the input

signal, thus can be viewed as a “reduced-reference” measurement paradigm. Since

the amount of information extracted from the input signal is negligible (in terms of

bitrate), the proposed scheme is much more economical than existing double-ended

architectures which require access to the actual input signal.

In analogy to Fig. 3.1, if the input single-ended algorithm is placed at the point

labeled “A” and the output single-ended algorithm is placed at the point labeled “B”

then quality degradations are handled. On the other hand, if the input single-ended

algorithm is placed at the point labeled “B” and the output single-ended algorithm

is placed at the point labeled “C” then quality enhancements are handled. Here,

focus will be placed on the latter scenario as it represents the case where the input

signal is not clean and the output is of quality better than the input. As mentioned

previously, the performance of current double-ended schemes may be compromised in

this scenario.

To allow for accurate speech quality measurement of noise suppressed signals, the

proposed GMM-based algorithm described in Section 2.3 is updated to incorporate
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Figure 3.2: Architecture of the proposed distributed quality measurement paradigm.

reference models of noise suppressed speech signals. Similar to the clean and degra-

dation models, the “noise-suppressed” model is designed for voiced, unvoiced, and

inactive frames. If noise suppression is detected, consistency measures relative to all

three reference models (clean, degraded and noise suppressed) are computed; other-

wise, consistency measures are computed only for the clean and degradation models.

In the latter case, the MARS mapping described in Section 2.4.2.2 is used; in the for-

mer, a separate MARS mapping is trained on a subjectively scored noise-suppressed

speech database. Details regarding the database will be given in Section 3.3.2. Noise-

suppressed reference model and MARS mapping design considerations will be given

in Section 3.3.2.1.

With the proposed architecture, the transmission of input measurements (this is

illustrated with the dashed arrow in Fig. 3.2) and a system diagnosis module are

necessary in order to detect if noise suppression has occurred. We have investigated

the effectiveness of transmitting the input SNR (SNRin), computed by the VAD

algorithm, and the input MOS-LQO (M̂OSin), estimated based on the consistency

measures calculated relative to the clean and the degradation reference models. As

mentioned previously, the amount of side information is negligible.
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At the output end, SNRout is computed and a preliminary MOS-LQO (M̂OStmp,out)

is estimated based on the clean and the degradation model-based consistency mea-

sures. These two measures are sent to the system diagnosis module. The diagnosis

module, in turn, sends a flag back to the output single-ended algorithm indicating

whether noise suppression has been detected. Detection occurs if SNRin < SNRout

and M̂OSin + γ < M̂OStmp,out, where γ is the standard deviation of the estimated

input MOS-LQO (γ = 0.29 on the noise suppressed database). With this detection

rule all of the noise suppressed speech files were correctly detected.

If noise suppression is detected, the output single-ended algorithm calculates a

final MOS-LQO (M̂OSout) based on consistency measures calculated relative to the

three reference models, otherwise M̂OSout = M̂OStmp,out. Other diagnostic tests,

such as measuring (in terms of MOS) the amount of quality degradation (or enhance-

ment) imparted by the transmission system, or measuring SNR improvement, are also

possible. Further characterization of the noise suppression algorithm may be aided

with the transmission of other input measurements (e.g., see measures in [112]).

3.3.2 Experimental Results

The proposed architecture is tested using the subjectively scored NOIZEUS database

[113]. The database comprises speech corrupted by four types of noise (babble, car,

street, and train) at two SNR levels (5 and 10dB) and processed by 13 different

noise suppression algorithms; a total of 1792 speech files are available. The noise

suppression algorithms fall under four different classes: spectral subtractive, sub-

space, statistical-model based, and Wiener algorithms. A complete description of the

algorithms can be found in [21, 113].
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The subjective evaluation of the NOIZEUS database was performed according to

ITU-T Recommendation P.835 [19]. As mentioned in Section 1.1.2, with the P.835

methodology, listeners are instructed to successively attend to and rate three different

signal components of the noise suppressed speech signal: (1) the speech signal alone

and (2) the background noise alone using the scales described in Table 1.4, and (3)

the overall speech-plus-noise content using the ACR scale shown in Table 1.1. The

average scores over all listeners are termed SIG-LQS, BCK-LQS, and OVRL-LQS,

respectively; OVRL is equivalent to the MOS-LQS described in [14].

3.3.2.1 Design Considerations

In order to train reference models of noise suppressed speech signals and to design

the updated MARS mapping function, the NOIZEUS database has to be separated

into a training and a test set. We perform this separation in three different ways to

test the robustness of the proposed architecture to different unseen test conditions.

First, speech files are separated according to noise levels; files with SNR = 10dB

are used for training and files with SNR = 5dB are left for testing. Second, speech

signals are separated according to noise sources. Signals corrupted by street and train

noise are used for training and signals corrupted by babble and car noise are left for

testing. Lastly, speech files are separated according to noise suppression algorithms.

For training, noisy signals processed by spectral subtractive and subspace algorithms

are used; noisy signals processed by statistical-model based and Wiener algorithms

are left for testing. The number of conditions for each of the three test sets described

above are 52, 52, and 64, respectively, out of a total of 104 degradation conditions

for the entire database.
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To design the reference models for noise suppressed speech signals we experiment

with different combinations of GMM parameters. It is observed that for all three tests

32 diagonal components for voiced and unvoiced frames and 6 diagonal components

for inactive frames strike a balance between accuracy and complexity. Moreover, a

separate MARS mapping function is designed for each of the three tests. Each MARS

function maps a 9-dimensional feature vector into M̂OSout.

3.3.2.2 Test Results

In this section, we compare the performance of the proposed architecture to that of

PESQ. Two different PESQ configurations are tested: (1) a hypothetical configuration

where the original clean signal is available, and (2) a more realistic scenario where

only the noisy and the noise suppressed signals are available. Configuration 1 makes

use of the clean signal as reference input and although evaluation of noise reduction

systems is not recommended, as described in [40], the results to follow suggest accurate

estimation performance. On the other hand, configuration 2 exemplifies the case

where the reference input signal is not clean, and the quality of the output is better

than that of the input. As will be shown in the sequel, this configuration compromises

PESQ performance. Moreover, swapping the input signals (i.e., noise suppressed

signal to reference input and noisy signal to degraded input) brought no improvement.

Table 3.1 presents “per-condition” R and RMSE between condition-averaged

OVRL-LQS and condition-averaged OVRL-LQO, for the three test sets. Results are

reported after 3rd order monotonic polynomial regression (for PESQ the mapping

proposed in [108] is not used as it degrades performance substantially). As can

be seen, when the original clean speech signal is available, PESQ achieves accurate
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Table 3.1: Performance comparison with PESQ and P.563 on the three test sets.
Configuration 1 makes use of the original clean signal and the noise-suppressed signal,
configuration 2 of the noisy signal and the noise-suppressed signal.

PESQ - Config. 1 PESQ - Config. 2 Proposed P.563
Test No.

R RMSE R RMSE R RMSE R RMSE

1 0.886 0.178 0.610 0.305 0.861 0.196 0.587 0.311
2 0.864 0.233 0.581 0.377 0.827 0.261 0.563 0.384
3 0.922 0.181 0.731 0.321 0.817 0.270 0.637 0.361

estimation performance. However, when only the noisy signal is available as reference,

substantial improvement is attained with the proposed architecture. For comparison,

Table 3.1 also shows the performance of P.563 on the three tests.

3.3.2.3 Component Quality Estimation

Existing objective measurement algorithms can only attempt to estimate OVRL-LQS.

However, it is unknown how humans integrate the individual contributions of speech

and noise distortions when judging the overall quality of a noise suppressed signal.

To this end, devising an algorithm capable of also estimating SIG-LQS and BCK-

LQS would be invaluable. The estimates can be used to test newer generations of

noise reduction algorithms and to assess the algorithms’ capability of maintaining

speech signal naturalness whilst reducing background noise to nonintrusive levels. In

[110], the NOIZEUS database is used to evaluate six double-ended objective estimates

of SIG-LQS and BCK-LQS. The study makes use of the original clean signal as a

reference and low correlations with subjective quality were reported (R < 0.65).

Due to the modular architecture of the proposed GMM-based algorithm, a sim-

ple extension can be implemented to allow for single-ended SIG-LQS and BCK-LQS
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Table 3.2: Performance of SIG-LQO and BCK-LQO estimated by the proposed algo-
rithm.

SIG-LQO BCK-LQO
Test No.

R RMSE R RMSE

1 0.813 0.295 0.717 0.235
2 0.804 0.355 0.728 0.289
3 0.807 0.331 0.707 0.305

estimation. In particular, two new MARS mapping functions are optimized on the

training datasets. To estimate SIG-LQS, a 6-dimensional MARS function is devised

to map consistency measures of voiced and unvoiced frames (for all three reference

models - clean, degraded, and noise suppressed) into SIG-LQO. To estimate BCK-

LQS, a simple 4-dimensional MARS function is designed to map consistency measures

of inactive frames (for all three models) and the estimated SNR into BCK-LQO. Ta-

ble 3.2 presents “per-condition” R and RMSE between condition-averaged SIG-LQS

(BCK-LQS) and condition-averaged SIG-LQO (BCK-LQO), for the three aforemen-

tioned test sets. Results are reported after 3rd order monotonic polynomial regression

optimized on each test set. The results are encouraging given that the original clean

signal is not available as a reference. Next, blind estimation of noise suppressed

speech quality is addressed.

3.4 Single-Ended Quality Measurement

In this section, the behavior of the PLP cepstrum is investigated for speech corrupted

by additive background noise as well as noisy speech processed by a noise suppression

algorithm. The obtained insights are used to develop an algorithm for blind estimation
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Figure 3.3: Architecture of the proposed single-ended algorithm for noise suppressed
speech.

of noise suppressed speech quality, as described next.

3.4.1 Architecture of Proposed Algorithm

The overall architecture of the proposed algorithm is depicted in Fig. 3.3. First,

the level of the speech signal is normalized and the signal is filtered to simulate the

handsets used in listening tests. Perceptual features are then extracted from the test

speech signal every 10 milliseconds. The voice activity detector (VAD) labels the

feature vector of each frame as either active or inactive (background noise). Offline,

three reference models are created. High-quality undistorted speech signals, signals

corrupted by additive noise at low signal-to-noise ratios (SNR), and noise suppressed

speech signals are used to produce reference models of the behavior of clean, noisy,

and noise suppressed speech features, respectively.

In all cases, the probability distribution of the features is modeled with a Gaussian
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mixture model; separate models are trained for active and for inactive frames. Online,

the expectation-maximization algorithm is used to estimate a GMM for the features

extracted from the test signal. To achieve low-complexity processing, an approxima-

tion of the Kullback-Leibler distance (KLD) is used. KLDs are computed between the

online estimated models and the three reference models. The calculated distances,

together with a spectral flatness measure, serve as speech quality indicators and are

mapped to an estimated mean opinion score, M̂OS [19]. A detailed description of

each block is provided in the remainder of this section.

3.4.1.1 Pre-processing and VAD

The pre-processing module performs level normalization and intermediate reference

system (IRS) filtering. The level of the speech signal is normalized to -26 dBov using

the P.56 speech voltmeter [114] and the modified IRS filter is applied to emulate the

characteristic of the handset used in the listening tests (see description in [36]). Voice

activity detection is employed to label speech frames as active or inactive. Recall that

in Chapter 2 and in Section 3.3 a voicing detector was used to further label active

frames as “voiced” or “unvoiced.” Here, voicing decision is not carried out as the

extra processing did not garner substantial improvement in estimation performance.

The VAD from the adaptive multi-rate (AMR) speech codec is used [88].

3.4.1.2 Feature Extraction

Pilot experiments are carried out to investigate the behaviour of PLP cepstra un-

der additive background noise (a similar experiment is described in [115] for lin-

ear prediction coefficients) and different noise suppression conditions. The plots in
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Fig. 3.4 (a)-(d) illustrate the behavior observed for clean, noisy, and noise suppressed

speech. The coefficients depicted in Fig. 3.4 are averaged over one thousand active

speech frames. It is observed that PLP cepstral coefficients lie in distinct areas of the

cepstral vector space with lower quality speech (e.g., SNR=5 dB in Fig. 3.4) lying

further away from the clean speech “centroid,” represented by “×” in the figure. As

can be seen, similar trends are found for all PLP cepstral coefficients. It is also noted

that different “distances” are obtained for different noise reduction algorithms (not

illustrated in the figure) and different noise levels; such insights suggest that KLDs

can be advantageously used for quality measurement of noise suppressed speech.

Moreover, our experiments, in addition to the results reported in [76, 116], have

suggested that a spectral flatness measure can be used to assist in clean, noisy, and

noise-suppressed speech discrimination. As such, the mean cepstral deviation σ̄ of

the test signal, shown in Section 2.3.1 to be related to spectral flatness, is computed

according to (2.2). In our experiments, σ̄ is calculated for active and inactive frames

separately (σ̄active and σ̄inactive, respectively).

3.4.1.3 Reference GMMs and Parameter Estimation

Gaussian mixture models are used to model the PLP cepstral coefficients of active

and of inactive speech frames. Gaussian mixture densities are given by (2.4) and are

described in more detail in Section 2.3.3. In subsequent sections, a Gaussian mixture

density will be represented by λ={λ1, . . . , λM}, where λi = {µi, Σi, αi}. Offline,

six Gaussian mixture densities, pmodel,class(x|λ) are trained. The subscript “model”

represents either clean, noisy, or noise suppressed; the subscript “class” represents

either active or inactive frames. Online, the EM algorithm [99] is used to train a GMM
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Figure 3.4: PLP cepstral behavior for clean speech (×), speech corrupted by back-
ground noise with an SNR of 5 dB (•) and 10 dB (?), and noisy speech processed by
a noise reduction algorithm (+). Cepstral coefficients are averaged over 1000 active
speech frames. The plots depict (a) x̄2 versus x̄1, (b) x̄3 versus x̄2, (c) x̄4 versus x̄3,
(d) x̄5 versus x̄4.
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on features extracted from the test signal; a separate model is found for active and

for inactive frames (p̃class(x|λ̃)). Pilot experiments show that if the EM algorithm is

initialized using the k-means algorithm it converges in approximately 17 iterations for

the active models and in 7 iterations for the inactive models. Alternate initialization

schemes were also tested but resulted in no significant performance improvement.

3.4.1.4 KLD Calculation and MOS Mapping

The Kullback-Leibler distance measures the “distance” between two probability den-

sity functions p1(x) and p2(x) by

D(p1, p2) =

∫
p1(x) ln

p1(x)

p2(x)
dx. (3.1)

D(p1, p2) describes how well p2(x) approximates p1(x). The KLD is calculated be-

tween the online-estimated model (p̃ for short) and the three reference models (p),

for active and inactive frames. Commonly, the Monte Carlo method is used to com-

pute the integral in (3.1); this, however, is prohibitively expensive for online quality

measurement. We experiment with two fast approximations of the KLD; one (termed

D1) assumes equal number of Gaussian components between reference and test mod-

els M = M̃ [117], while the other (D2) allows for M 6= M̃ [118]. D1 is given by

D1(p, p̃) =
M∑
i=1

αi log
αi

α̃i

+
M∑
i=1

αi D(bi(x), b̃i(x)), (3.2)

where

D(bi(x), b̃i(x)) =
1

2

(
log

(det Σ̃i

detΣi

)
+ trace(Σ̃−1

i Σi)

+ (µ̃i − µi)
T Σ̃−1

i (µ̃i − µi)−K
) (3.3)

is the KLD between two K-variate Gaussian densities.
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The approximation described in [118] is posed as a linear programming problem.

While many algorithms are available to solve the problem efficiently, they are often

complex and time consuming. For the sake of reduced computational complexity, a

simplification is performed and D2 is defined here as

D2(p, p̃) =
M∑
i=1

M̃∑
j=1

αiα̃jD(bi(x), b̃j(x)). (3.4)

Note from (3.1)-(3.4) that D1 and D2 are asymmetric measures, i.e., D(p, p̃) 6=
D(p̃, p). We symmetrize the measures according to [119] using

Dsym(p, p̃) =
1

1

D(p, p̃)
+

1

D(p̃, p)

. (3.5)

Symmetric measures are termed D1sym and D2sym. Performance of the symmetric

and asymmetric measures is described in Section 3.4.3.

As a final step, the six computed KLDs, together with σ̄active and σ̄inactive, are

mapped to M̂OS. We experiment with several different candidate mapping functions:

linear, multivariate polynomial and support vector regression (SVR). Simulation re-

sults showed that a radial basis SVR, with parameters optimized via linear search,

provides lower estimation error. The results to follow are all based on using SVR.

The reader is referred to [96] for a more comprehensive SVR review.

3.4.2 Algorithm Design Considerations

The KLD measure D1 described in (3.2) requires that both the reference GMM and

the online-estimated model have the same number of Gaussian components. A larger

number of components may hamper online parameter estimation. It is observed

that speech databases used for subjective listening-quality assessment contain files
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that are on average 7 seconds long with an activity ratio between 60% and 85%.

Hence, GMMs with 6 and 2 components are chosen for active and inactive models,

respectively. This choice results in a training ratio (ratio between number of frames in

the test signal and number of parameters estimated during training) of approximately

10. For the KLD measure D2 described in (3.4), we experiment with reference models

with 6 ≤ M ≤ 16 for active frames and 2 ≤ M ≤ 6 for inactive frames. Superior

performance is attained with 10 and 4 components, respectively. Moreover, we allow

the number of GMM components for the test signal to vary such that the training

ratio is kept above 10. It is observed that for most signals on our test databases

(described in Section 3.4.3) the chosen number of components is M̃ = 6 and M̃ = 2,

for active and inactive frames, respectively.

3.4.3 Experimental Results

In this section, experimental results are presented. Section 3.4.3.1 describes the

databases used for training and testing of the proposed algorithm, Section 3.4.3.2

presents the experimental results, and Section 3.4.3.3 addresses multi-component

quality estimation.

3.4.3.1 Database Description

The NOIZEUS database, described in Section 3.3.2, is used to design the refer-

ence GMMs. To train the MOS mapping function, a proprietary subjectively scored

database is used. The database is comprised of speech corrupted by car and street

noise at SNR=15 dB and office noise at SNR=20 dB and processed by the SMV

speech codec; a total of 960 speech files are available. Three datasets not used in
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training (i.e., unseen) are used for testing. The first dataset (DS1) is comprised of

speech corrupted by four noise sources (babble, car, street and hoth) at three SNR

levels (0 dB, 10 dB, and 20 dB). The second (DS2) has noisy speech files (babble,

street, car) at three SNR levels (0 dB, 10 dB, and 20 dB) processed by two noise sup-

pression algorithms (SMV and Adobe Auditionr with its “reduction level” parameter

set to 75%). The third (DS3) is comprised of noisy speech signals (car, hoth, babble

at 10 dB and 20 dB) processed by three speech codecs (G.711, G.729, and AMR) with

packet loss concealment (PLC) capabilities. Random and bursty losses are simulated

at 2% and 4%. A silence insertion concealment scheme is also present. Dataset DS3 is

used to test the robustness of the proposed algorithm to alternate (unseen) methods

of speech enhancement, in particular, packet loss concealment. The combined three

test datasets consist of 1080 speech files covering 135 degradation conditions.

3.4.3.2 Test Results

Table 3.3 presents “per-condition” correlation (R) and root-mean-square error (RMSE)

between MOS-LQS and P.563 MOS-LQO, for the three unseen datasets. Results

are obtained after 3rd order monotonic polynomial regression, as recommended in

[50]. The table also reports the percentage improvement, relative to P.563, attained

by the proposed algorithm for the four KLD measures described in Section 3.4.1.4.

The columns labeled “%R” and “%RMSE” list the percentage increase in R and

percentage reduction in RMSE, respectively. Note that “%R” differs from the “R-

improvement” measure described in (2.12). For measure D2sym, R and RMSE values

are also shown to ease comparison. As can be seen, the proposed algorithm outper-

forms P.563 on all three datasets; as much as 60% increase in R and 37% decrease in
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Table 3.3: Performance of P.563 and the proposed algorithm on three unseen datasets

Unseen P.563 D1 D1sym

Dataset R RMSE %R %RMSE %R %RMSE

DS1 0.838 0.355 8.1 22.6 6.6 17.8
DS2 0.631 0.492 31.1 27.6 32.6 29.5
DS3 0.527 0.293 38.2 19.4 52.1 29.6

Average – – 34.6 23.5 42.4 29.5

Unseen D2 D2sym

Dataset %R %RMSE R %R RMSE %RMSE

DS1 8.7 24.3 0.926 10.4 0.246 30.6
DS2 35.1 32.6 0.865 37.0 0.318 35.2
DS3 49.5 27.6 0.846 60.5 0.183 37.2

Average 42.3 30.1 – 48.8 – 36.2

RMSE can be attained. The plot in Fig. 3.5 depicts MOS-LQO versus MOS-LQS for

the proposed D2sym measure; each data point represents one of the 135 degradation

conditions available in the combined test dataset.

Furthermore, it is observed that for datasets DS1 and DS2, similar performance

is attained for asymmetric and symmetric measures. This is due to the fact that

when p and p̃ are similar (i.e., test signal is “consistent” with one of the reference

models, as expected for DS1 and DS2) the KLD takes on small values and D(p, p̃) ≈
D(p̃, p) ≈ Dsym(p̃, p). On the other hand, when a test signal is not as consistent with

the reference model (e.g., noisy speech processed by a PLC algorithm, as in DS3)

the KLD takes on larger values and D(p, p̃) 6= D(p̃, p). In this case, the symmetric

measure performs better. Another example of this behavior can be observed with

unseen test signals corrupted by speech-correlated noise (MNRU); measure D2 results
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Figure 3.5: Per-condition MOS-LQO versus MOS-LQS for the combined test datasets
using the proposed D2sym measure.

in R = 0.782 and RMSE = 0.685 while D2sym in R = 0.955 and RMSE = 0.326.

For comparison purposes, P.563 achieves R = 0.9142 and RMSE = 0.443.

3.4.3.3 Component Quality Estimation

Due to the modular architecture of the proposed algorithm, a simple extension can be

implemented to allow for single-ended measurement of BCK-LQS and SIG-LQS. In

particular, two new SVR mapping functions are obtained. To estimate signal distor-

tion, a 4-dimensional SVR is devised to map the KLDs computed from active frames

(relative to the three reference models) and σ̄active into SIG-LQO. To estimate back-

ground intrusiveness, a 5-dimensional SVR is designed to map the KLDs computed

from inactive frames, σ̄inactive, and an estimated SNR to BCK-LQO. Here, we use the

SNR estimated by the AMR VAD algorithm.

Since only the NOIZEUS database contains subjective SIG and BCK scores,
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10-fold cross validation is used to measure the performance of the proposed scheme.

The NOIZEUS database is randomly divided into 10 data sets of almost equal size.

Training and testing is performed in 10 trials, where, in each trial, one of the data sets

serves as a test set and the remaining 9 are combined to serve as a training set. Each

data set serves as a test set only once. The ten resulting R’s and RMSE’s are aver-

aged to obtain the cross-validation performance figures. The proposed single-ended

algorithm is shown to attain an average R = 0.80 and RMSE = 0.33 for SIG-LQO,

and R = 0.74 and RMSE = 0.39 for BCK-LQO.

3.4.4 Algorithm Processing Time

Processing time is also an important figure of merit for gauging algorithm perfor-

mance. We use the ANSI-C reference implementation of P.563. With the exception

of the VAD algorithm (taken from the ANSI-C reference implementation of the AMR

codec), the remainder of the proposed algorithm is implemented using Matlab version

7.2 Release 2006a. Simulations are run on a PC with a 2.8 GHz Pentium 4 processor

and 2 GB of RAM. Here, processing time is defined as the time it takes to process ten

speech files randomly selected from the three unseen test sets. The ten files combined

have a total length of 57.77 seconds. For P.563, a processing time of 13.75 seconds

is attained. The proposed algorithm (using D2sym) has a processing time of 9.04

seconds, an approximate 35% reduction. A slight decrease in processing time of 0.15

seconds can be attained by using D1sym. Note that a complete C implementation of

the proposed algorithm would further increase the speedup.

Table 3.4 describes the percentage of the total processing time used by each mod-

ule in the proposed algorithm. As can be seen, the computational complexity of the
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Table 3.4: Algorithm processing times

Processing Module Time (s) %

Level normalization & IRS 1.30 14.4
PLP calculation 0.91 10.1

Cepstral deviation calculation 0.01 0.1
Voice activity detection 5.90 65.3

GMM parameter estimation (EM) 0.68 7.5
KLD calculation & MOS mapping 0.24 2.6

Total 9.04 100

proposed algorithm is mainly attributable to voice activity detection and level nor-

malization and IRS filtering. A more efficient VAD algorithm and implementation

would further decrease algorithm processing time. Further improvements may also

be attained if the algorithm is employed in a codec-integrated manner, as proposed

in Section 4.6. Moreover, experiments also show that only a slight decrease in per-

formance is attained if level normalization and IRS filtering are not performed; this

can result in a 44% reduction in processing time relative to P.563.

3.5 Conclusions

In this chapter, two configurations have been proposed for quality measurement of

noise suppressed speech. The first, a network-distributed configuration, subsumes

both double- and single-ended measurement paradigms. The results demonstrate

that, besides offering the conventional functionality of measuring the quality of sys-

tems that degrade speech, the algorithm is capable of also measuring the quality of the

transmission system per se and of characterizing the performance of the noise suppres-

sion algorithm. In this role, the proposed algorithm performs better than P.563 and
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provides a functionality not available with PESQ. The second, a single-ended configu-

ration, proposes the use of Kullback-Leibler distances, computed between online- and

offline-obtained statistical models of speech behaviour, as indicators of speech quality.

Besides offering the conventional function of measuring the overall quality of a noise

suppressed speech signal, both proposed configurations also allow for the estimation

of quality dimensions labeled “signal distortion” and “background intrusiveness,” as

described in ITU-T P.835 [19].



Chapter 4

Hybrid Signal-and-Link-Parametric

Quality Measurement for VoIP

Communications

4.1 Preamble

This chapter is compiled from material extracted from a manuscript published in the

IEEE Transactions of Audio, Speech, and Language Processing [84] and a manuscript

to appear in the Elsevier Speech Communications Journal [83]. Earlier versions of

this work appeared in the Proceedings of the 2007 IEEE International Conference on

Acoustics, Speech, and Signal Processing [53].

80
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4.2 Introduction

For VoIP communications, it is known that current signal-based measurement algo-

rithms produce large “per-call” (also termed “per-sample”) quality estimation errors

and error variance [37–39]. Large estimation errors limit the usability of signal based

methods for online quality monitoring and control purposes [70]. Link paramet-

ric methods, on the other hand, provide low per-call quality estimation errors and

have been widely deployed in VoIP communication services. The major disadvan-

tage of link parametric measurement is that signal distortions that are not captured

by connection parameters are not accounted for. With burgeoning wireless-VoIP

communications, representative signal distortions include varying levels and types of

background noise, artifacts introduced by noise suppression algorithms, as well as

temporal clipping artifacts resultant from VAD errors. Since wireless-VoIP commu-

nications are expected to become ubiquitous in the near future [4, 5], it is important

to investigate the effects of such distortions on the performance of existing state-of-

the-art quality measurement algorithms.

In this chapter, several wireless-VoIP degradation conditions are simulated and

an in-depth statistical analysis is performed to assess the limitations of standard

signal-based and link parametric algorithms. Focus is placed on the effects of modern

wireless-VoIP degradations on listening quality, hence, factors such as jitter and de-

lay, which affect conversational quality [120], are not considered. With the obtained

insights, a single-ended hybrid signal-and-link-parametric speech quality measure-

ment algorithm is proposed. The remainder of this chapter is organized as follows.

Section 4.3 describes experiments which motivate the need for hybrid quality measure-

ment. Section 4.4 introduces the architecture of the proposed algorithm, Section 4.5
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presents experimental results, and Section 4.6 addresses the processing time of the

proposed scheme. Lastly, conclusions are presented in Section 4.7.

4.3 Motivation for Hybrid Measurement

In this section, experiments are described which motivate the need for single-ended

hybrid signal-and-link-parametric quality measurement. Experiments are carried out

with a subjectively scored database, as described in Section 4.3.1. The sensitivity

of P.563 to different VoIP network parameters is investigated in Section 4.3.2. Lim-

itations of pure link parametric approaches, here characterized by the performance

of an extended E-model implementation, are discussed in Section 4.3.3. Lastly, Sec-

tion 4.3.4 reports P.563 and E-model performance figures for wireless-VoIP degrada-

tions; for comparison purposes, PESQ performance is also reported.

4.3.1 Database Description

A bilingual (English and French) subjectively scored speech database is used in our

experiments. The speech database contains a wide range of typically-encountered

VoIP scenarios. In particular, it comprises speech processed by G.711, G.729 and

Adaptive Multi-Rate (AMR) codecs, with the latter operating at full rate (12.2 kbps).

The packet loss concealment (PLC) algorithm used for G.711 is described in [121];

G.729 and AMR have their own built-in PLCs. Speech signals processed by G.711

with a simple silence insertion PLC scheme are also included. Packet durations of

10, 20, and 30 ms are used, except for AMR where only 20 ms packets are available.

Random and bursty losses are simulated at 1, 2, 4, 7, and 10% with the ITU-T
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G.191 software package [122]; the Bellcore model is used for bursty losses. Losses are

applied to speech packets, thus simulating a transmission network with voice activity

detection (VAD).

To investigate the limitations of pure link parametric measurement methods, sev-

eral signal-based distortions are generated in combination with codec distortions

(with and without packet losses). Signal-based distortions include temporal clippings,

acoustic background noise, and noise suppression artifacts. In order to maintain the

simplifying E-model assumption that impairments are additive in the perceptual do-

main, low levels of noise and packet loss rates are used. Temporal clipping distortions

are either manually generated by replacing the beginning of a talkspurt with a copy

of the noise floor, or simulated by forcing VAD false negatives in the G.711 and G.729

codecs. Acoustic noise distortions are generated by corrupting clean speech with three

noise types (hoth, babble, and car) at two signal-to-noise ratio (SNR) levels (10 and

20 dB). Noisy speech is then processed by the three aforementioned speech codecs

(singly or in tandem) with and without packet losses. In the former scenario, random

and bursty packet losses are simulated at 2% and 4%.

Noise suppression artifacts in combination with codec distortion are used to fur-

ther simulate impairments introduced by wireless-VoIP connections. Here, two noise

suppression algorithms are tested. The first is the spectral subtraction algorithm

available in the Adobe Audition software; a suppression factor of 75% is used. The

second is the state-of-the-art noise suppression algorithm available as a pre-processing

module in the SMV codec. Speech is corrupted by four noise types (hoth, car, street,

and babble) at three SNR levels (0 dB, 10 dB, and 20 dB). Noisy speech is processed

by the noise suppression algorithms and the noise-suppressed signal is input to the
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G.711, G.729 or AMR speech codec.

The raw speech files were recorded in an anechoic chamber by four native Canadian

French talkers and four native English talkers (half male and half female). Reference

speech signals were filtered using the modified intermediate reference system (MIRS)

send filter according to ITU-T Recommendation P.830 Annex D [123]. Degraded

speech signals were further filtered using the MIRS receive filter. In both instances,

speech signals were level adjusted to -26 dBov (dB overload) and stored with 8 kHz

sampling rate and 16-bit precision. Similar to the ITU-T Supp. 23 dataset [106], each

speech file comprises two sentences separated by an approximately 650 ms pause.

The subjective MOS test was conducted in 2006 following the requirements de-

fined in [13, 123]. Sixty listeners (native in each language; roughly half male and half

female) participated in each listening quality test. The headphones used were Beyer-

dynamic DT 770 and the ambient noise level in the listening room was kept at around

27-28 dBA. A total of 300 degradation conditions are available per language. Of the

300 impairment conditions, 146 are due to packet losses, 21 to temporal clipping,

31 to acoustic noise and codec distortion, 54 to acoustic noise, codec distortion and

packet losses, and 48 are due to noise suppression and codec distortion. The tests

described in Section 4.3.2 make use of the 146 packet loss degradation conditions

(total of 1168 speech files), the tests in Section 4.3.3 make use of the 85 noisy speech

conditions (total of 672 speech files), and the tests in Section 4.3.4 make use of the

85 aforementioned noisy conditions in addition to the 48 noise-suppressed conditions,

totalling 1056 speech files.
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4.3.2 Limitations of Pure Signal-Based Measurement

In this section, statistical analysis is used to assess the relationship between P.563

performance and four connection parameters: codec-PLC type, packet size, packet

loss pattern (random or bursty), and packet loss rate. For real-time quality monitoring

and control applications, objective quality measures are required to attain low per-call

estimation errors. Hence, we use per-call MOS residual as the performance criterion.

MOS residual is given by MOS-LQO minus MOS-LQS (or MOS-LQE minus MOS-

LQS) and is abbreviated as “LQO-LQS” (or “LQE-LQS”) in Figures 4.1-4.3. Factorial

analysis of variance suggests that two parameters have significant main effects on

P.563 accuracy, as described in Section 4.3.2.1. Two significant two-way interaction

effects on P.563 accuracy are described in Section 4.3.2.2.

4.3.2.1 Main Effects

Factorial analysis of variance suggests that codec-PLC type and packet loss rate

incur significant main effects on P.563 accuracy (p < 0.0001); the box and whisker

plots depicted in Fig. 4.1 (a) and (b) assist in illustrating this behavior, respectively.

The boxes have lines at the lower quartile, median, and upper quartile values; the

whiskers extend to 1.5 times the interquartile range. Outliers (data with values

beyond the ends of the whiskers) are represented by the symbol “+”. The plots are

computed using the Matlab function “boxplot” and the vertical width of the notches

that cut into the boxes at the median line indicates the variability of the median

between samples. When the notches of two boxes do not overlap, their medians are

significantly different at the 95% confidence level [124]. From Fig. 4.1 (a), it can

be seen that P.563 performance is strongly dependent on packet loss rates. P.563
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underestimates MOS-LQS for low loss rates and overestimates MOS-LQS for higher

loss rates; MOS residuals greater than 2 MOS points are obtained at a 10% loss rate.

Fig. 4.1 (b) suggests that P.563 attains high per-call estimation errors, in particular

for the G.711 PLC scheme. According to [50], P.563 has only been validated for

PLC schemes in CELP (codebook-excited linear prediction) codecs (e.g., G.729); this

can explain the poor performance obtained for G.711. Nonetheless, for the G.729

codec, P.563 attains residual errors that can be greater than 1.5 MOS point; on

a five-point MOS scale, this can be the difference between having acceptable and

unacceptable quality [39]. Moreover, the smallest median MOS residual occurs with

the simple G.711 silence insertion loss concealment scheme; this can be explained by

the fact that P.563 is equipped with a temporal clipping detection module. As will be

shown in Section 4.3.2.2, however, this does not hold true for high packet loss rates.

For comparison purposes, Fig. 4.1 (c) depicts the non-significant effects of speech

codec-PLC type on extended E-model (described in Section 4.3.3) performance. The

substantially smaller residual errors validate the accuracy of the extended E-model

implementation and corroborate the popularity of link parametric measurement for

VoIP online quality monitoring.

4.3.2.2 Two-way Interactions

Statistical analysis has suggested two significant interaction effects on P.563 perfor-

mance: codec-PLC type and packet loss rate (p < 0.007), and loss pattern and packet

loss rate (p < 0.003). Box and whisker plots depicted in Fig. 4.2 (a) and (b) help il-

lustrate this behavior, respectively. From Fig. 4.2 (a), it can be seen that P.563

underestimates MOS-LQS for low packet loss rates for both G.711 and G.729 codecs.
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Figure 4.1: Significant one-way effects of (a) packet loss rates and (b) codec-PLC
type on P.563 accuracy. For comparison purposes, (c) depicts non-significant effects
of codec-PLC type on extended E-model accuracy.
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Figure 4.2: Significant two-way interactions of (a) codec-PLC type and loss rate, and
(b) loss rate and loss pattern on P.563 accuracy.

The simple silence insertion scheme attains median residual values closer to zero,

except for high packet loss rates (10%) where it attains the highest residual median

value. The largest residual errors (outliers) occur for the G.711 codec under a 10%

packet loss rate.

Moreover, Fig. 4.2 (b) suggests that P.563 accuracy varies less for random losses

than for bursty losses. For low packet loss rates, median residual MOS values are

similar for both random and bursty packet losses. For higher loss rates, bursty losses

attain median residual MOS values almost one-quarter of a MOS point higher than

random losses. Relative to link parametric measurement, P.563 is shown to be more
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sensitive to connection parameters and to attain higher per-call estimation errors.

4.3.3 Limitations of Pure Link Parametric Measurement

Parameters used in the E-model represent terminal, network, and environmental qual-

ity factors that are assumed to be known a priori. Extended E-model implementations

propose to estimate parameters (e.g., SNR) in real-time [73]. In this experiment, an

extended E-model implementation is used. Non-tabulated equipment impairment

factors are obtained from subjectively scored speech data (in accordance with [65])

and the noise level is computed using the clean reference speech signals. Note that

link parametric measurement is favored with this unrealistic assumption that true

noise level information is available online. Commonly, only estimated noise levels are

available, as in the experiment described in Section 4.5. Here, statistical analysis is

used to investigate the effects of noise level, noise type, and noise and packet loss on

extended E-model measurement performance. The analysis suggests significant main

effects of noise level (p < 0.006) and noise type (p < 0.04); the box and whisker plots

depicted in Fig. 4.3 (a) and (b) help illustrate this behavior, respectively.

From the plots, it can be observed that the extended E-model underestimates

MOS-LQS and has a higher residual MOS variance for lower noise levels (SNR= 20

dB) and for babble and car noise. On the other hand, we observe that noise level

does not show significant effects on P.563 accuracy. P.563 is equipped with a “noise

analysis” module which not only estimates the SNR, but also takes into account other

spectrum-related measures such as high frequency (2500-3500 Hz) spectral flatness.

It is observed, however, that P.563 performance is lower for babble and car noise,

both of which have “low-pass” characteristics.
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Figure 4.3: Significant one-way effects of (a) noise level and (b) noise type on extended
E-model accuracy.
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4.3.4 Performance Figures

In this section, we investigate the accuracy of the E-model and P.563 algorithms under

the wireless-VoIP degradation conditions described in Section 4.3.1. For comparison,

PESQ results are also reported where original clean speech files are used as reference.

As suggested in [125], the true noise level is used (assumed to be known a priori) in

E-model calculations and subjective tests are used to obtain impairment factors not

described in [62–64].

Moreover, to our knowledge, equipment impairment factor values for noise sup-

pression algorithms are not available. In fact, artifacts introduced by such enhance-

ment schemes are dependent on noise type and noise levels. In our experiments,

an estimated SNR (post enhancement) is used in the computation of MOS-LQE for

noise-suppressed speech. The SNR is estimated with the P.563 “noise analysis” mod-

ule described in [50]. In a controlled experiment, the estimated SNR is shown to be

highly correlated with the true SNR (correlation close to unity). It is important to

emphasize, however, that while using estimated (or measured) SNR is convenient for

quantifying noise artifacts that remain after enhancement, noise suppression artifacts

that arise during speech activity are not accounted for; this is a major shortcoming

of parameter-based quality measurement methods.

Pearson correlation (R) and root-mean-square error (RMSE) are used as per-

formance figures. Results in Table 4.1 are reported on a per-condition basis where

condition-averaged MOS-LQS and condition-averaged MOS-LQO (LQE) are used to

estimate R and RMSE. For comparison, performance figures are reported before

and after 3rd order monotonic polynomial regression. Moreover, as suggested in [40],

PESQ performance is reported before and after the mapping described in [108]. The



CHAPTER 4. HYBRID MEASUREMENT FOR VOIP COMMUNICATIONS 92

Table 4.1: Per-condition performance of E-model, PESQ and P.563. Post-mapping
performance is represented by R∗ and RMSE∗.

E-model P.563

R RMSE R∗ RMSE∗ R RMSE R∗ RMSE∗

Noisy 0.716 0.715 0.722 0.278 0.622 0.479 0.643 0.307
Noise-suppressed 0.917 0.547 0.924 0.301 0.767 0.587 0.799 0.472

Overall 0.657 0.661 0.676 0.411 0.642 0.507 0.673 0.413

PESQ

R RMSE R∗ RMSE∗

Noisy 0.641 0.315 0.633 0.465
Noise-suppressed 0.937 0.393 0.921 0.475

Overall 0.833 0.324 0.816 0.464

post-mapping performance figures are represented by R∗ and RMSE∗ in Table 4.1.

As can be seen for noisy speech, E-model based measurement outperforms signal-

based measurement. Recall, however, that in this experiment, E-model based mea-

surement is favored as true noise information was used in E-model computations. It

is also observed that P.563 performance is comparable to that of PESQ; this is an

important result as P.563 does not make use of a clean reference signal. For noise-

suppressed speech, however, P.563 performance is inferior to PESQ and E-model.

Overall, performance figures are substantially lower than those reported for tradi-

tional telephony applications for all three standard algorithms (e.g., see [51, 126]).

The plots in Fig. 4.4 (a)-(c) depict the overall per-condition MOS-LQO (LQE)

versus MOS-LQS for the E-model, P.563, and PESQ, respectively. Plots (a) and

(b) are after 3rd order polynomial mapping and plot (c) depicts PESQ MOS-LQO

before (“◦”) and after (“×”) the mapping described in [108]. As can be seen from the

plots and from Table 4.1, PESQ performance decreases once the mapping is applied.
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This suggests that an alternate mapping function needs to be investigated for modern

degradation conditions such as those present in wireless-VoIP communications.

4.3.5 Discussion

The comparisons described above suggest that the performance of standard objective

quality measurement algorithms is compromised for degradation conditions present

in wireless-VoIP communications. To quantify the decrease in measurement accu-

racy, a calibration experiment is carried out with conventional subjectively scored

VoIP speech data (English and French). Here, clean speech, as opposed to noise-

corrupted or noise-suppressed speech, is processed by the four aforementioned codec-

PLC schemes (G.711, G.711*, G.729, and AMR) under the same random and bursty

packet loss conditions (2% and 4%). With such conventional VoIP impairment sce-

narios, standard algorithms are shown to perform reliably (e.g., see [51, 126]). In this

calibration experiment, it is observed that MOS-LQE estimates attain an RMSE

that is 48% lower than that reported in Table 4.1. The MOS-LQO estimates (for

both PESQ and P.563), in turn, attain an RMSE value that is 35% lower.

As observed, E-model performance is affected more severely by wireless-VoIP dis-

tortions. Such behavior is expected as the E-model is a parameter-based measurement

method and, as such, overlooks signal-based distortions that are not captured by the

link parameters. Hence, improved performance is expected from hybrid signal-and-

link-parametric measurement schemes where signal-based distortions are estimated

from the speech signal and used to improve parameter-based quality estimates. The

architecture of the proposed hybrid measurement algorithm is described next.
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Figure 4.4: Per-condition MOS-LQO versus MOS-LQS for the overall dataset after
3rd order polynomial mapping for (a) the E-model and (b) P.563, and (c) PESQ
before (“◦”) and after (“×”) the mapping described in [108].
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4.4 Architecture of the Proposed Hybrid Measure-

ment Algorithm

The overall architecture of the proposed algorithm is depicted within the dotted lines

in Fig. 4.5. Offline, E-model ratings and subjective listening tests are used to deter-

mine the base quality representative of several VoIP communications scenarios. As an

embodiment of the proposed approach, we obtain base quality values for commonly

used codec-PLC types with different packet sizes, under different packet loss patterns

and packet loss rates. Base quality values are stored in a lookup table for fast online

operation. Statistical models, in particular Gaussian mixture models, are designed us-

ing perceptual features extracted from speech signals processed by the various speech

codecs operating under clean reference conditions. Reference GMM parameters, λ as

defined in Section 2.3.3, are also stored in a lookup table for each codec. The speech

codecs used in our experiments are those described in Section 4.3.1.

Online, IP header-extracted parameters are used to obtain the base quality and

reference GMM parameters from lookup tables. Once packets are decoded and PLC

is performed, the speech signal is level-normalized and filtered. Perceptual features

are then extracted from the pre-processed test signal. The voice activity detector

labels the feature vector of each frame as either active or inactive. The extracted

features are compared to stored models of normative codec operation behavior via

a simple consistency measure. Temporal discontinuity detection is used to detect

temporal clippings, an impairment which occurs commonly in VoIP communications

[101]. Lastly, a MOS-mapping module is used to map the base quality, computed

consistency measures, noise spectrum tilt, and detected temporal discontinuities to a
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Figure 4.5: Architecture of the proposed hybrid signal-and-link-parametric quality
measurement algorithm.

final MOS-LQO. A more detailed description of each signal-based processing block is

provided in the remainder of this section.

4.4.1 Pre-processing, VAD and Feature Extraction

The pre-processing module performs level normalization and IRS filtering. The level

of the speech signal is normalized to -26 dBov using the P.56 voltmeter [114] and the

MIRS filter is applied to emulate the handsets used in listening tests. Voice activity

detection is employed to label speech frames as active or inactive; the VAD from the

G.729 codec [127] is used.

Fifth order perceptual linear prediction (PLP) cepstral coefficients x = {xi}5
i=0

are extracted from the speech signal and serve as primary features. The zeroth
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cepstral coefficient x0 is employed as an energy measure and differential PLP cepstral

coefficients are used as a measure of signal spectral dynamics; in particular, delta

and double-delta cepstral coefficients are used. Motivated by the results described in

Section 4.3.3, noise-related features are also extracted. Pilot experiments are carried

out with noise spectral flatness and noise spectrum tilt; the latter (henceforth referred

to as tinac) resulted in superior performance and is used throughout the remainder

of this chapter. As in [116], tinac is approximated by the 1st order linear prediction

coefficient averaged over inactive speech frames.

4.4.2 GMMs and Consistency Calculation

Reference models of normative codec behavior are designed for commonly used speech

codecs. For active speech frames, GMMs are trained for PLP cepstral coefficients ap-

pended with delta and double-delta coefficients, i.e., zact,m = [xm, ∆xm, ∆2xm]. For

inactive speech frames, GMMs are obtained from PLP cepstral coefficients xm. Gaus-

sian mixture models are given by (2.4) and are described in more detail in Sec-

tion 2.3.3. For the sake of notation, a Gaussian mixture density will be represented

in subsequent sections as λ={λ1, . . . , λM}, where λi = {µi, Σi, αi}. In our experi-

ments, diagonal covariance matrix Gaussian components are used and two recursive

(greedy) EM algorithm implementations are investigated. Greedy EM implemen-

tations estimate model parameters λ and the number of Gaussian components M

simultaneously.

We experiment with a pruning approach which starts with a large number of com-

ponents and uses a stochastic approximation recursive learning algorithm to prune

irrelevant components [128], and a progressive approach which starts with a single
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component and adds components sequentially [129]. In order to guard against over-

fitting, the largest admissible M is chosen such that the training ratio (ratio between

number of scalar parameters that need to be estimated during training and the num-

ber of training samples available) is maintained above an empirically-set value of 100.

In our experiments, it is observed that both implementations result in similar perfor-

mance and M = 32 is chosen for active frames and M = 4 for inactive frames. Lastly,

reference-model consistency measures are computed as per (2.5). The notation cact

and cinac is used to denote consistency measures computed for active and inactive

speech frames, respectively.

4.4.3 Temporal Discontinuity Detector

Temporal discontinuities (also known as “clippings”) are a known source of quality

degradation in VoIP systems [101]. Front-end, midspeech (short mutes), and back-end

clippings may occur due to erroneous VAD decisions, erroneous line echo cancelation

decisions, or simple silence insertion PLC schemes. A simple energy-thresholding

scheme is proposed and temporal discontinuities are detected by evaluating abrupt

changes in x0.

From our experiments, abrupt stops (back-end clippings) can be accurately de-

tected if

Ti =
x0,i+1

x0,i

< 0.35.

Abrupt starts (front-end clippings) are detected if Ti > 2.02. Experiments on our

databases show that with this simple energy-thresholding scheme, approximately 98%

of front-end clippings are correctly classified. On the other hand, approximately 10%

of “normal” abrupt starts, such as those experienced with certain plosive consonants
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(e.g., /d/), are misclassified as clippings. To improve classification performance,

more complex machine learning methods can be used, such as the one described

in Section 2.3.4. Since abrupt starts have, intuitively, less significant impact on

perceived speech quality than abrupt stops [49, 130], such classification errors are

shown not to be detrimental to overall speech quality measurement. For the sake of

reduced computational complexity, the simple energy-thresholding scheme is used in

the experiments described in Section 4.5. Lastly, midspeech clippings are detected

when an abrupt stop is followed by an abrupt start during speech activity. The mute

length is estimated from the number of consecutive frames for which T ' 1.

Previous studies suggest that clipping frequency of occurrence and midspeech

clipping duration are two major factors affecting subjective quality [130]. We define

clipping frequency of occurrence as the ratio of the number of detected discontinu-

ities over active speech duration (clips/second); frequency of occurrence is computed

for front- and back-end clippings (ff and fb, respectively). For midspeech clippings,

subjective tests suggest that similar quality is attained for high occurrence of short

mutes and low occurrence of long mutes [130]. As a consequence, clipping frequency

of occurrence is computed for midspeech clippings of short duration (fmid−s) and long

duration (fmid−l). Mutes between 10-70 ms are classified as short duration and mutes

between 70-260 ms as long duration.

4.4.4 MOS Mapping

Machine learning tools are used to devise an accurate mapping between the base

quality (MOS0), computed consistency measures, noise spectrum tilt, and clipping

frequency of occurrence to a final MOS-LQO. Here, a support vector regressor (SVR)
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[96], trained on subjectively scored data, is used. The input to the MOS mapping

module is the 8-dimensional feature vector consisting of

z = [MOS0, cact, cinac, tinac, ff , fb, fmid−s, fmid−l].

A subset of the ITU-T Supplement 23 (experiment 3) database [106], along with

material from three other proprietary databases, is used to train the MOS mapping

module. The Supplement 23 subset includes speech processed by the G.729 codec

(singly or in tandem conditions) with random and bursty losses at 3% and 5%. Clean

and noisy conditions (street, hoth and vehicle noise at an SNR=20 dB) are included.

Proprietary databases include temporal-clipped speech material, speech processed by

the G.711 codec with 3% random packet losses, and noisy speech. The latter includes

speech degraded by car and street noise (SNR=15 dB) and processed by the SMV

codec, operating at full and half rate (8.5 kbps and 4 kbps, respectively), with 1%

random losses. A total of 2672 speech samples are used to train the MOS mapping

function.

4.5 Experiments

The proposed hybrid signal-and-link-parametric measurement algorithm is tested on

a subset (1232 speech samples) of the corpus described in Section 4.3.1. The subset

includes 154 impairment conditions covering temporal clipping, noise and codec dis-

tortion, noise and packet losses, and noise suppression and codec distortion. Hence,

the test set covers distortions which are not captured by connection parameters, such

as those present in modern wireless-VoIP communications. We emphasize that degra-

dation conditions and speech files available in the test set are distinct from those in
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Table 4.2: Per-condition performance of hybrid, pure link parametric (extended E-
model) and pure signal-based (P.563) measurement. Results are reported before and
after third-order polynomial regression.

Hybrid Link (Extended E-model) Signal (P.563)

R RMSE R %R ↑ RMSE %RMSE R %R ↑ RMSE %RMSE

before 0.813 0.329 0.696 38.5 0.665 50.5 0.701 37.5 0.494 33.4
after 0.821 0.301 0.712 37.8 0.352 14.5 0.720 36.1 0.407 26.0

the training set, thus are unseen to the proposed algorithm. Comparisons are carried

out with P.563 and the extended E-model described in Section 4.3.4.

Correlation (R) and root-mean-square error (RMSE) are used as algorithm figures

of merit. We report improvement in correlation incurred by the proposed scheme over

pure signal-based or link parametric measurement by the so-called “R-improvement”

measure described in (2.12). Improvement in RMSE attained by using the proposed

algorithm is reported by means of the conventional percentage reduction in root-mean-

square error (%RMSE). As recommended in [50], results in Table 4.2 are reported

on a per-condition basis where condition-averaged MOS-LQS and condition-averaged

MOS-LQO (or MOS-LQE) are used to estimate R and RMSE. Results are reported

before and after third-order monotonic polynomial regression.

As can be seen, the proposed method improves on pure link parametric measure-

ment by approximately 38% and 15% in terms of R and RMSE, respectively (post

third-order mapping). Improvements of approximately 36% and 26% (R and RMSE

respectively) are attained relative to pure signal-based measurement. For comparison

purposes, PESQ attains R = 0.831 and RMSE = 0.458 with the mapping described

in [108]. Thus, the hybrid single-ended scheme offers somewhat lower RMSE than

the state-of-the-art double-ended standard algorithm. Recall, however, that the usage
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Table 4.3: Per-call RMSE of hybrid, pure link parametric and pure signal-based
measurement.

Hybrid Link Signal

RMSE 0.513 0.689 0.587
%RMSE – 25.6 12.6

of PESQ is not recommended for systems that include a noise suppression algorithm.

Furthermore, statistical analysis shows that noise type and noise level have insignifi-

cant effects on the performance of the proposed hybrid scheme.

As mentioned previously, for online quality monitoring applications, per-call resid-

ual MOS error is an important performance metric. Per-call RMSE is reported in

Table 4.3 for the extended E-model, P.563, and the proposed hybrid scheme. As

can be seen, the proposed algorithm attains reductions in per-call RMSE of ap-

proximately 13% and 26% relative to pure signal-based and pure link parametric

measurement, respectively. From Table 4.3, it can also be observed that under noisy

and wireless-VoIP conditions, P.563 attains smaller per-call residual errors than the

extended E-model, thus corroborating the fact that pure link parametric measurement

is compromised for degradations not captured by connection parameters.

4.6 Algorithm Processing Time

As mentioned previously, pure link parametric measurement has gained widespread

use due to its low algorithm processing time. As a consequence, it is important to

measure the computational overhead incurred by the signal-based branch of the pro-

posed algorithm. Here, processing time is defined as the time it takes to process

ten speech files randomly selected from the test set described in Section 4.5. With
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Table 4.4: Algorithm processing time for P.563 and the proposed hybrid scheme, with
and without codec-integrated processing.

Algorithm Proc. time (s) %Time↓

P.563 26.25 –
Proposed 12.47 52.5

Proposed (codec-integrated) 3.06 88.3

the exception of the VAD algorithm (taken from the ANSI-C G.729 reference imple-

mentation), the proposed algorithm is implemented using Matlab version 7.2 Release

2006a. Simulations are run on a PC with a 2.8 GHz Pentium 4 processor and 2 GB

of RAM.

The ten files combined have a total length of 62.57 seconds. Algorithm processing

times for the Matlab implementation of the proposed algorithm and the ANSI-C

reference implementation of P.563 are reported in Table 4.4. The column labeled

“%Time↓” describes the percentage reduction in processing time obtained by the

proposed scheme relative to P.563. As can be seen, a reduction in processing time

of approximately 53% is attained; note that a complete C implementation of the

proposed algorithm would further increase the speedup.

An in-depth analysis of the processing time of each operational module depicted

in Fig. 4.5 shows that over 75% of the processing time is attributable to voice ac-

tivity detection. To further reduce processing time, the proposed algorithm can take

advantage of the fact that in most VoIP codec implementations, VAD decisions are

transmitted by the encoder and are readily available at the decoder. Moreover, in the

event of a lost packet, VAD decisions are predicted by the decoder based on previously

received packets. Hence, the hybrid scheme can reuse these VAD decisions in lieu of

recomputing them. To investigate the gains obtained with such “codec-integrated”
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processing, we use the Matlab implementation of the G.723.1 speech codec described

in [131] where inactive frames are detected as “null frames” in the G.723.1 bitstream.

Table 4.4 also exhibits the gains obtained with the codec-integrated hybrid quality

measurement scheme. As can be seen, an overall reduction in processing time of

approximately 88% can be attained relative to P.563.

4.7 Conclusions

In this chapter, the limitations of standard signal-based and link parametric quality

measurement algorithms are reported for emerging wireless-VoIP communications. A

hybrid signal-and-link-parametric quality measurement scheme is then proposed to

overcome such limitations. Experiments described herein serve to demonstrate the

gains obtained by combining the strengths of pure signal-based and pure link para-

metric measurement paradigms to devise a more comprehensive quality measurement

scheme. The proposed hybrid methodology improves on pure link parametric ap-

proaches by measuring distortions that are not captured by connection parameters.

In turn, lower per-call estimation errors are attained relative to pure signal-based mea-

surement. The proposed scheme is shown to have modest computational overhead

relative to pure link parametric measurement, and when operated in an integrated

manner, can attain processing time that is 88% lower than the ITU-T P.563 algo-

rithm. Moderate computational complexity, low per-call estimation errors and the

ability to account for distortions not captured by connection parameters are valuable

attributes for online VoIP quality monitoring and control.



Chapter 5

Quality Measurement for Hands-

Free Speech Communications

5.1 Preamble

This chapter is compiled from material extracted from a manuscript submitted to

the IEEE Transactions on Instrumentation and Measurement in 2008 [85] and a

manuscript that appeared in the Proceedings of the 2008 International Workshop

for Acoustic Echo and Noise Control [86]. An earlier version of this work appeared

in the Proceedings of the 2007 Interspeech/Eurospeech Conference [57].

5.2 Introduction

When speech is produced in an enclosed environment, the acoustic signal follows

multiple paths from source to receiver. Such reflections may arrive with delays ranging

from a few milliseconds to a few seconds, depending on room geometry and sound

105
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absorption properties. Early reflections, on the order of few tens of milliseconds,

modify the signal short-time spectrum causing a change in signal timbre; such an

effect is termed spectral colouration [132, 133]. Delays greater than 50 milliseconds

(termed late reflections), on the other hand, are perceived as distinct copies of the

direct path signal and cause temporal colouration distortions. The exponential decay

of late reflections results in temporal smearing, which in turn, decreases perceived

speech quality and intelligibility.

Traditionally, the time-domain room impulse response (IR) or room geometry and

wall absorption properties are used to measure room acoustical parameters. Offline

measurement of room impulse responses, however, is a laborious task. In addition,

the impulse response varies with acoustic source positioning, room temperature, as

well as placement of room furnishings. As a consequence, room acoustical parameters

obtained from room IR measurements are not feasible for real-time signal processing

applications. To this end, blind signal-based measurement, where room acoustical

parameters are obtained from the reverberant speech signal, has been the focus of

more recent research. Special emphasis has been given to blind estimation of the

so-called reverberation time (T60) parameter (see Section 5.3.2).

In the past, a handful of blind T60 estimators have been proposed. In [134],

the diffuse tail of the reverberation is modeled as exponentially damped Gaussian

white noise. A maximum-likelihood (ML) estimate of the time constant of the decay

is used to characterize T60. With ML-based approaches, it is common to assume

that the source signal stops abruptly and has long pauses between speech segments;

such requirements are needed in order to attain reliable estimates. As expected, the

performance of ML-based methods is compromised for noise-corrupted reverberant
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speech. Notwithstanding, the work described in [135] proposes a “generalized” ML

procedure which loosens the aforementioned assumptions and allows for blind T60

estimation under noisy environments.

Alternately, the work described in [136] shows that reverberation corrupts the har-

monic structure of voiced speech segments. Hence, a measure of pitch “strength” (or

periodicity) is used to blindly estimate T60. The estimator, however, is shown to be

sensitive to speaker gender. Additionally, the kurtosis of linear prediction (LP) resid-

uals is used in [137] for blind T60 characterization. The idea is that for clean voiced

speech segments, LP residuals have strong peaks corresponding to glottal pulses. The

peaks become smeared in time as reverberation increases, thus reducing the LP resid-

ual kurtosis to that of a Gaussian distribution. LP residual-based methods have also

been successfully used in the past for noise and reverberation suppression [138–140].

In this chapter, the use of temporal dynamics information is investigated for blind

measurement of room acoustical parameters. Short-term dynamics information is ob-

tained from commonly used delta cepstral coefficients. Statistics computed from the

zeroth-order delta cepstral sequence (∆0) are shown to provide useful cues for blind

T60 estimation. Moreover, long-term dynamics information is obtained by means

of spectral analysis of temporal envelopes of speech, a process commonly termed

modulation spectrum processing. A reverberation-to-speech modulation energy ra-

tio measure is proposed and used for blind measurement of several room acoustical

parameters, including estimators of subjective perception of spectral colouration, re-

verberant tail effect, and overall speech quality. Experiments described herein show

that the proposed estimators outperform a baseline system in scenarios involving

reverberant speech with and without the presence of acoustic background noise.
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The remainder of this chapter is organized as follows. Section 5.3 describes models,

characterization and simulation of room reverberation. Section 5.4 provides motiva-

tion and description of the proposed measures; experimental results are presented in

Section 5.5. Objective assessment of perceived reverberation effects is discussed in

Section 5.6 and conclusions are given in Section 5.7.

5.3 Room Reverberation

In this section, models of room reverberation are presented. Parameters commonly

used to characterize reverberation are presented, as well as methods to generate re-

verberant speech.

5.3.1 Models of Room Reverberation

Conventionally, the propagation from source to microphone in a reverberant enclosure

is modeled as a linear filtering process. The reverberant signal s(n) is modeled as a

convolution of the anechoic source speech signal v(n) with the room IR r(n)

s(n) = v(n) ∗ r(n). (5.1)

If additive background noise N(n) is present, (5.1) becomes

s(n) = v(n) ∗ r(n) + N(n). (5.2)

It is known that under the diffuse sound field assumption, the ensemble average

of the squared room impulse response decays exponentially with time [141]

〈r2(n)〉 = A exp(−kn). (5.3)
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Figure 5.1: Exponential decay of the late reflections of a room with T60 = 0.5 s.

The angled brackets 〈·〉 denote the ensemble average, A is a gain term, and k is the

damping factor given by [141]

k = log 106/(Fs × T60), (5.4)

where Fs is the sampling frequency and T60 is the so-called reverberation time, as

described in Section 5.3.2. The plot in Fig. 5.1 illustrates the exponential decay of

a room impulse response generated via the image method [142] with T60 = 0.5 s and

Fs = 8 kHz. The dashed curve in the figure illustrates the exponential decay given

by (5.3) with A = 0.0045.

5.3.2 Characterization of Room Reverberation

Reverberation time (T60) is the parameter most widely used to characterize room

acoustics. By definition, it is the time required for the sound energy to decay by

60 dB after the sound source has been turned off [143]. Commonly, the so-called

Schroeder integral is used to measure T60 from the room IR [144]. Other parameters
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that characterize room acoustics and are obtained from the room IR include early

decay time (interval required for the energy to decay by 10 dB), speech clarity index

(energy ratio between 50 ms early reflections and the remaining late reflections) [145],

and direct-to-reverberation energy ratio (DRR). DRR, expressed in decibel, is the

energy ratio between the direct sound and the room reverberation and is given by

DRR = 10 log10




nd∑
n=0

r2(n)

∞∑
n=nd+1

r2(n)




[dB], (5.5)

where ndFs is the direct sound arrival time.

Moreover, the spectral content of the room IR can provide information regarding

spectral colouration. In [146, 147], the second-order moment of the room frequency

response is proposed as a measure of spectral colouration. Additionally, subjective

listening tests may be used to characterize the perceived quality of speech signals

produced in reverberant enclosures. In [148], subjective listening tests are used to

characterize the perception of timbre. Recently, listening tests have been used to

characterize subjective perception of colouration, reverberation decay tail effects, and

overall quality for reverberant and reverberation-suppressed speech [22]. The test

follows the guidelines described in ITU-T Recommendation P.835 [19].

5.3.3 Simulation of Reverberant Speech

Two tools are used to generate reverberant speech: SIREAC (SImulation of REal

ACoustics) [149] and the ITU-T software package described in Recommendation

G.191 [122]. Anechoic speech from eight speakers (half male, half female) are used

throughout our experiments. A total of 256 utterances (averaging six seconds each)
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Figure 5.2: Microphone array setup at the Bell Labs varechoic chamber.

are spoken per speaker; half of the utterances are in English and the other half in

French. Speech samples are each composed of two sentences separated by an approx-

imately 800 ms pause; all signals are stored with an 8 kHz sampling rate and 16-bit

precision. SIREAC is used to artificially generate reverberant speech with T60 values

between 0.2-1 s (0.1 s increments), 1.5 s, and 2 s. The level of the reverberant speech

signal is normalized to -26 dBov (dB overload) using the ITU-T P.56 voltmeter [114].

The ITU-T G.191 tool is used to convolve room impulse responses collected from

real environments with the anechoic speech signals. The real room impulse responses

are stored with an 8 kHz sampling rate and include those collected with a four-

channel linear microphone array (as depicted in Fig. 5.2) at the Bell Labs varechoic

chamber1 with 100%, 43% and 0% panels open [150], and those collected with a single

microphone in a large cafeteria, a medium-sized meeting room, a small lavatory,

and a medium-sized office [151]. As with the simulated data, reverberant speech

signals are normalized to -26 dBov. Table 5.1 reports parameters T60 and DRR,

computed from the room impulse responses, for the aforementioned environments. In

the table, varechoic chamber data is represented as “VC-%-mi” where “%” represents

the percentage of open reflective panels and “mi” the microphone number in the

microphone array (see Fig. 5.2).

1The Bell Labs varechoic chamber is a rectangular room with 368 independently actuated surfaces
in the walls, ceiling, and floor. T60 is controlled by the percentage of open panels.
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Table 5.1: Room acoustical parameters for real room impulse responses

Room T60(s) DRR (dB)

VC-100%-m1 0.3 1
VC-100%-m2 0.3 1
VC-100%-m3 0.3 -1
VC-100%-m4 0.3 -1
VC-43%-m1 0.5 0
VC-43%-m2 0.5 -3
VC-43%-m3 0.5 -2
VC-43%-m4 0.5 -5
VC-0%-m1 0.9 -5
VC-0%-m2 0.9 -7
VC-0%-m3 0.9 -7
VC-0%-m4 0.9 -9

Office 0.6 -4
Meeting 0.9 -7
Lavatory 1.3 -9
Cafeteria 1.5 -14
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5.4 Temporal Dynamics and Proposed Estimators

In this section, a description of the features used to capture short- and long-term

temporal dynamics is given; the proposed T60 and DRR estimators are also described.

5.4.1 Short-Term Temporal Dynamics

Short-term energy dynamics information is used for blind measurement of T60. In

this chapter, the zeroth order mel-frequency cepstral coefficient (MFCC) is proposed

as a measure of short-term log-spectral energy and the zeroth order delta MFCC

as a measure of log-energy rate of change [91]. Mel-frequency cepstral coefficients

(MFCC) can be obtained in a manner similar to conventional cepstra [91] with the

exception that frequency bands are warped to a mel scale [152]. MFCC are chosen as

they are widely used by the speech and speaker recognition communities, hence blind

T60 estimators can be developed to improve recognition performance whilst requiring

negligible computational overhead.

Let c0,m denote the zeroth order MFCC for frame m and c0 the cepstral sequence

for a given speech signal. Analogously, let ∆c0,m denote the per-frame zeroth order

delta MFCC, computed according to (2.6), and ∆c0 the delta sequence. Fig. 5.3 (a)

depicts, from top to bottom, the waveform, c0, and ∆c0, for a clean speech signal,

respectively. As observed, speech onsets induce positive “peaks” in ∆c0; analogously,

speech offsets induce negative peaks. Fig. 5.3 (b) and (c) illustrate the effects of

increasing T60 on speech offset regions (e.g., between 1.75-2.25 s); the plots correspond

to T60 = 0.4 s and 1 s, respectively. As can be seen, as T60 increases c0 decays at a

slower rate, which in turn, decreases the log-energy rate of change. Moreover, due to

temporal smearing, the intervals between phonemes are filled with reverberant energy
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Figure 5.3: From top to bottom: waveform, c0, and ∆c0, for (a) clean speech, (b)
reverberant speech with T60 = 0.4s, and (c) 1 s.
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(e.g., between 0.5-1.75 s), thus also decreasing the log-energy rate of change.

In order to capture such reverberation tail effects, sample statistics are computed

from N ∆c0 samples (di). In particular, standard deviation (σ∆), skewness (S∆),

kurtosis (K∆), and median absolute deviation (D∆) are computed according to

σ∆ =

√√√√ 1

N − 1

N∑
i=1

(di − d̄)2, (5.6)

S∆ =

√
N

N∑
i=1

(di − d̄)3

(
N∑

i=1

(di − d̄)2

)3/2
, (5.7)

K∆ =

N

N∑
i=1

(di − d̄)4

(
N∑

i=1

(di − d̄)2

)2 − 3, (5.8)

D∆ = mediani(|di −medianj(dj)|), (5.9)

where d̄ indicates the sample average of di.

The aforementioned inverse relationship between T60 and log-energy rate of change

can be observed in the σ∆ versus T60 plots depicted in Fig. 5.4 (solid curve). More-

over, since reverberation tail effects are more pronounced in speech offset intervals,

it is expected that with an increase in T60, fewer negative peaks will occur in the

∆c0 sequence. A direct consequence of this effect is the increase in positive skewness

S∆, as illustrated in Fig. 5.4 (dashed curve). Note that with our speech data, both

speech offsets and onsets are severely affected by the reverberation tail for very large

reverberation times; hence the decrease in S∆ for T60 = 2 s. Additionally, it is ob-

served that an increase in T60 will result in a shift of the variance to large deviations,
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Figure 5.4: Plots of (normalized) sample statistics versus T60. Data points represent
average statistics for simulated reverberant speech signals.

rendering the ∆c0 distribution with a heavier tail. Hence, an increase in K∆ is ob-

served, as illustrated in Fig. 5.4 (dotted curve). Lastly, D∆ (dash-dot curve) is used

as it provides increased robustness (relative to σ∆) to extreme ∆c0 deviations around

the mean, an effect commonly observed in multiple-sentence speech signals with an

inter-sentence duration that is longer than T60.

Due to the non-linear relationship between T60 and ∆c0 sample statistics, we

propose to use machine learning algorithms to blindly estimate room acoustical pa-

rameters. In our experiments, a support vector regressor (SVR) [96] is used to

estimate T60. The input to the SVR is a four-dimensional vector comprised of

us = [σ∆,S∆,K∆,D∆]. As will be shown in Section 5.5.4, a simple adaptation pro-

cedure can be used to improve estimation performance in the presence of acoustic

background noise.
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Figure 5.5: Block diagram of the signal processing steps involved in the computation
of the spectro-temporal signal representation.

5.4.2 Long-Term Temporal Dynamics

In order to capture long-term temporal dynamics of the reverberant speech signal,

we propose to use a spectro-temporal representation of speech termed modulation

spectrum. The modulation spectrum characterizes the frequency content (or rate of

change) of long-term speech temporal envelopes. In our experiments, the spectro-

temporal signal representation is obtained using the signal processing steps depicted

in Fig. 5.5.

First, the speech signal s(n) is filtered by a bank of critical-band filters. In our
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Figure 5.6: Filter responses for the 23-channel gammatone filterbank for (a) narrow-
band and (b) wideband speech signals.

simulations, a critical-band gammatone filterbank, with 23 filters, is used to emulate

the processing performed by the cochlea [153]. Filter center frequencies range from

125 Hz to nearly half the sampling rate (e.g., 3567 Hz for an 8 kHz sampling rate).

Filter bandwidths are characterized by the equivalent rectangular bandwidth (ERB)

[154]. The ERB for filter j, j = 1, . . . , 23, is given by

ERBj =
fj

Qear

+ Bmin, (5.10)

where fj represents the center frequency for the filter and Qear and Bmin are con-

stants set to 9.265 and 24.7, respectively. The plots in Fig 5.6 (a) and (b) illustrate

the frequency response of the 23-channel gammatone filterbank used in our experi-

ments for both narrowband (Fs = 8 kHz) and wideband (Fs = 16 kHz) speech data,

respectively.

The output signal of the jth channel is given by

sj(n) = s(n) ∗ hj(n), (5.11)
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where hj(n) is the impulse response of the jth critical band filter. Temporal dynamics

information is obtained from the temporal envelope of sj(n). In our experiments, the

Hilbert transform H{·} is used to obtain temporal envelopes ej(n). The temporal

envelope (also called Hilbert envelope) is computed as the magnitude of the complex

analytic signal s̃j(n) = sj(n) + H{sj(n)}. Hence,

ej(n) =
√

sj(n)2 +H{sj(n)}2. (5.12)

Temporal envelopes ej(n) are then multiplied by a 256 ms Hamming window with

32 ms shifts; the windowed envelope for frame m is represented as ej(m), where

the time variable n is dropped for convenience. Here, 256 ms frames are used to

obtain long-term temporal dynamics information as well as appropriate resolution for

low-frequency modulation frequencies (e.g., around 4 Hz).

The modulation spectrum for critical band j is obtained by taking the discrete

Fourier transform F{·} of the temporal envelope ej(m), i.e., Ej(m; f) = |F(ej(m))|
where f denotes modulation frequency. Modulation frequency bins are grouped into

K bands in order to emulate an auditory-inspired modulation filterbank [155]. The

kth modulation band energy for frame m is denoted as Ej,k(m), k = 1, . . . , K. In

the experiments described in Section 5.5, K = 8 is used as it resulted in superior

performance. For the experiments described in Section 5.6, optimal values for K

(K∗) are chosen on a per-signal basis. Fig. 5.7 depicts the frequency response of the

eight-channel modulation filterbank used in our experiments. Filters are second-order

bandpass with quality factor Q = 2, as suggested in [155]. Additionally, Table 5.2

reports modulation filter center frequencies (fc) and filter bandwidths (BW ).

The modulation energy Ej,k(m) is then averaged over all active speech frames to
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Figure 5.7: Filter responses for the 8-channel modulation filterbank.

Table 5.2: Modulation filter center frequencies (fc) and bandwidths (BW ) expressed
in Hz.

Modulation Frequency Band Index

1 2 3 4 5 6 7 8

fc 4.0 6.5 10.7 17.6 28.9 47.5 78.1 128.0
BW 2.4 3.9 6.5 11.0 18.2 29.1 47.6 78.8
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obtain

Ēj,k =
1

Nact

Nact∑
i=1

Eact
j,k (i), (5.13)

where Nact denotes the number of active speech frames and Eact
j,k (i) the modulation

energy of such frames; voice activity detection algorithms used in our experiments are

described in Section 5.5.5. The Ēj,k notation will be used throughout the remainder

of this chapter to indicate active-speech modulation energy of the jth critical-band

signal grouped by the kth modulation filter. A representative illustration of Ēj,k for a

clean speech signal is depicted in Fig. 5.9 (a). Moreover, the notation ~̄Ek will be used

to denote the 23-dimensional energy vector for modulation channel k.

For clean (unreverberated) speech, it is known that Hilbert temporal envelopes

contain dominant frequencies ranging from 2− 20 Hz [156, 157] with spectral peaks at

approximately 4 Hz, corresponding to the syllabic rate of spoken speech [158]. With

reverberant speech, the diffuse IR reverberant tail is often modeled as an exponentially

damped Gaussian white noise process [134]. As such, it is expected that reverberant

signals attain more Gaussian white-noise like properties with increasing T60. Since

the Hilbert envelope can contain frequencies (also termed modulation frequencies) up

to the bandwidth of its originating signal [159], reverberant signals are expected to

contain significant modulation frequency components beyond the 2− 20 Hz range of

syllabic modulation frequencies. The plots in Fig. 5.8 assist in illustrating the effects

of T60 on temporal envelopes. Subplot (a) depicts ej(n) and the positive portion of

sj(n) (s+
j (n)) for a 256-millisecond frame of clean speech. Subplots (b) and (c), in

turn, depict the corresponding signals for reverberant speech with T60 = 0.4 s and 1 s,

respectively. The plots in the figure are for j = 14, corresponding to a filter center

frequency of 1.2 kHz.
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Figure 5.8: Temporal envelope ej(n) and positive segments of gammatone filtered
signal s+

j (n) for (a) clean speech and reverberant speech with (b) T60 = 0.4s, and (c)
1 s. The plots are for j = 14 corresponding to a filter center frequency of 1.2 kHz.
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Figure 5.9 depicts the active speech modulation energy Ēj,k for the speech signals

used to produce Fig. 5.8. In the plots, modulation energy values are normalized by

the maximum energy obtained over all modulation frequency bands. Fig. 5.9 (a) de-

picts the normalized modulation energy for a clean speech signal. As observed, most

significant modulation frequency components lie below 20 Hz. The plots in Fig. 5.9

(b) and (c), in turn, depict Ēj,k for the corresponding reverberant speech signals with

T60 = 0.4 s and 1 s, respectively. Increased modulation energy at higher modula-

tion frequency bands is observed for the two plots. Additionally, more pronounced

reverberation effects are observed for modulation frequencies greater than 20 Hz (i.e.,

k = 5− 8).

It can also be observed from Fig. 5.9 that an increase in T60 has negligible effect

on ~̄E1, which corresponds to the 4 Hz modulation frequency attributed to the syllabic

rate of speech. This insight is used to develop a reverberation-to-speech modulation

energy ratio (RSMR) measure computed per modulation frequency channel k and

given by

RSMRk =

23∑
j=1

Ēj,k

23∑
j=1

Ēj,1

. (5.14)

To illustrate the non-linear effects of T60 on RSMR, the plots in Fig. 5.10 depict

RSMRk versus T60 for k = 5 − 8. Data points reflect the average RSMR for the

simulated reverberant speech signals described in Section 5.3.3.

As expected, more pronounced effects are observed for k = 8 with an increase in

T60. In pilot experiments, we have observed that estimators based only on RSMR8
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Figure 5.9: Ēj,k for (a) clean speech and reverberant speech with (b) T60 = 0.4 s, and
(c) T60 = 1 s The gammatone filterbank depicted in Fig. 5.6 (a) is used.
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Figure 5.10: Plots of RSMRk versus T60 for k = 5− 8.

attain reliable performance for simulated data but slightly lower performance is at-

tained for reverberant speech generated from recorded room IRs. In order to design

estimators that are robust to unseen (real) conditions, a support vector regressor

is used to estimate T60. The four-dimensional vector input to the SVR is given by

ul = [RSMR5, RSMR6, RSMR7, RSMR8].

Moreover, as mentioned previously, reverberation tail effects can be quantified

from ~̄Ek, k = 5− 8. Speech information, on the other hand, can be obtained from ~̄E1.

This insight is used to compute an overall RSMR measure (ORSMR) which is shown

to be highly correlated with DRR. The measure ORSMR is given by

ORSMR =

8∑

k=5

23∑
j=1

Ēj,k

23∑
j=1

Ēj,1

=
8∑

i=5

RSMRi. (5.15)

The plot in Fig. 5.11 illustrates a linear regression relationship between ORSMR (ex-

pressed in dB) and DRR. Data points represent DRR values described in Table 5.1 and

average ORSMR values obtained from English reverberant speech signals generated
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Figure 5.11: Plot of DRR versus ORSMR; the latter is given by (5.15).

with recorded room IRs. Hence, the following DRR estimator (D̂RR) is proposed:

D̂RR = −5.6467− 1.0644×ORSMR (dB), (5.16)

where ORSMR and D̂RR are expressed in decibels. In the sequel, the proposed

estimators are tested on simulated and recorded reverberant speech.

5.5 Experiments

In this section, experimental setup, performance figures, baseline estimator, and two

experiments are described. The first experiment tests the performance of the pro-

posed estimators in reverberant enclosures; the second, in environments corrupted by

reverberation and acoustic background noise.

5.5.1 Experimental Setup

Reverberant speech signals generated with the SIREAC tool are used to train the

support vector regressors. Throughout the remainder of this section, the notation
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SVRs and SVRl will be used to distinguish blind T60 estimators derived from short-

and long-term temporal dynamics, respectively. On our data, SVR with radial basis

kernels and parameters optimized via linear search are shown to provide the best

estimation performance. The results to follow are all based on using radial basis

SVR. Additionally, the SIREAC tool is used to generate speech signals degraded by

reverberation and acoustic background noise. Reverberant speech is generated with

T60 ranging from 0.2 s to 1 s (with 0.1 s increments) and with babble noise at five

signal-to-noise ratio (SNR) levels (5 dB to 25 dB with 5 dB increments). As shown

in Section 5.5.4, a simple adaptation process can be used to increase the performance

of the proposed T60 estimators in the presence of acoustic noise. The “adapted” SVR

is termed S̃VR throughout the remainder of this paper.

5.5.2 Performance Figures and Baseline Estimator

Correlation (R), mean square error (MSE), and median absolute error (MAE) are

used as estimator figures of merit. The correlation is computed between blindly

estimated parameter values (wi) and parameter measurements obtained from room

IR (yi) using (2.10). The mean square error MSE is given by

MSE =
1

N

N∑
i=1

(wi − yi)
2, (5.17)

and the median absolute error MAE by

MAE = mediani(|wi − yi|). (5.18)

In the sequel, error measures are reported in milliseconds for T60 estimators and in

decibels for DRR estimators.
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Figure 5.12: Plot of κLP versus T60. The LP residual kurtosis for clean unreverberated
speech is represented as T60 = 0 in the plot.

The performance of the proposed T60 estimators is compared to a baseline esti-

mator based on the kurtosis of 12th order LP residuals (κLP ) computed over 32 ms

frames. In our experiments, the LP residual-based method was found to be more ro-

bust to background noise when compared to other existing ML-based schemes (e.g.,

[134, 135]). The plot in Fig. 5.12 shows the non-linear relationship between κLP and

T60. As can be seen, LP residual kurtosis approaches that of a Gaussian distribu-

tion with increasing T60. Clean speech, represented by T60 = 0 s in the plot, attains

high κLP ; this is expected as the LP residual for clean speech contains sparse peaks

corresponding to the glottal pulses. In our experiments, simulated data is used to

train the baseline SVR, henceforth referred to as SVRκ. Moreover, to the best of our

knowledge ours is the first blind estimator of DRR, thus comparisons with a baseline

are not carried out for D̂RR.
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Table 5.3: Performance comparison of proposed T60 estimators for speech corrupted
by reverberation.

Multi-Channel Room IR Single-Channel Room IR

SVRκ SVRs % SVRl % SVRκ SVRs % SVRl %

R 0.71 0.96 35.2 0.90 26.8 0.82 0.89 8.5 0.86 4.9
MSE (ms) 30.4 11.7 61.5 29.5 3.0 69.9 30.6 56.2 32.2 53.9
MAE (ms) 109.1 80.8 25.9 105.9 2.9 173.5 99.2 42.8 94.7 45.4

5.5.3 Experiment 1 - Reverberation Only

In this experiment, reverberant signals simulated with the SIREAC tool are used to

train T60 estimators SVRs, SVRl, and SVRκ. Bilingual reverberant data generated

with real single- and multi-channel recordings of room IR are regarded as unseen

data and are used for testing. Table 5.6 reports performance figures for the proposed

estimators as well as for the baseline estimator. Columns labeled “%” indicate the

percentage increase in R or percentage decrease in MSE and MAE attained with the

proposed measures relative to the baseline. As observed, both proposed estimators

outperform the baseline method. SVRs results in superior improvements relative to

SVRl for data generated with the multi-channel room IR. For data generated from

the single-channel room IR, both estimators attain similar performance figures, with

SVRl obtaining somewhat lower MAE.

Moreover, as mentioned previously, English reverberant speech data is used to

train the coefficients in (5.16). Hence, French reverberant speech data is regarded as

unseen and used to test the performance of the proposed DRR estimator. Fig. 5.13

depicts DRR versus average D̂RR for the unseen test set; R = 0.98, MSE = 1.11

(dB), and MAE = 0.97 (dB) are attained. The results are encouraging given that no
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Figure 5.13: Plot of DRR versus average D̂RR for unseen French test data.

knowledge of the room IR is used for estimation. Unfortunately, no other signal-based

estimators of DRR are available for comparison.

5.5.4 Experiment 2 - Reverberation and Background Noise

To test the performance of the proposed estimators in practical scenarios, we use

speech corrupted by reverberation and babble (crowd) noise. Table 5.4 reports per-

formance measures for SVRκ, SVRs and SVRl for various noise levels. As can be

seen, both proposed estimators outperform the baseline with SVRl showing reduced

sensitivity to noise level. This behaviour is expected as babble noise has speech-like

characteristics, thus mostly affecting ~̄E1. Overall, SVRs attains average improvements

over the baseline of 38.2%, 35.4%, and 23.1% in R, MSE, and MAE, respectively;

SVRl attains average improvements of 22.2%, 81%, and 68.2%.

Despite improved performance over the baseline, high MSE and MAE errors

compromise the usability of SVRs for practical applications. In order to reduce es-

timation errors, an “adaptation” process is proposed where the estimated SNR is
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Table 5.4: Performance comparison of T60 estimators for speech corrupted by rever-
beration and acoustic noise.

SVRκ SVRs

SNR (dB) R MSE MAE R % MSE % MAE %

25 0.67 144.1 331.6 0.94 40.3 45.3 68.6 184.4 44.4
20 0.65 192.6 401.1 0.92 41.5 92.2 52.1 273.8 31.7
15 0.63 274.2 498.7 0.88 39.7 185.2 32.5 403.5 19.1
10 0.60 397.2 612.6 0.81 35.0 331.6 16.5 538.3 12.1
5 0.55 551.9 728.2 0.74 34.5 510.1 7.6 669.4 8.1

Average – – – – 38.2 – 35.4 – 23.1

SVRl

SNR (dB) R % MSE % MAE %

25 0.76 13.4 45.9 68.1 146.6 55.8
20 0.76 16.9 46.5 75.9 151.5 62.2
15 0.75 19.0 46.9 82.9 153.7 69.2
10 0.75 25.0 46.7 88.2 153.9 74.9
5 0.75 36.4 55.6 89.9 154.1 78.8

Average – 22.2 – 81.0 – 68.2
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Table 5.5: Performance comparison of adapted T60 estimators for speech corrupted
by reverberation and acoustic noise.

S̃VRκ S̃VRs S̃VRl

SNR (dB) MSE MAE MSE % MAE % MSE % MAE %

25 62.8 203.3 32.8 47.8 107.2 47.3 35.0 44.3 117.7 42.1
20 65.6 201.1 39.9 39.2 144.4 28.2 35.2 46.3 114.9 42.9
15 71.1 203.6 46.2 35.0 168.8 17.2 34.8 51.1 120.9 40.6
10 74.8 202.5 52.4 29.9 190.0 6.2 35.2 52.9 119.8 40.8
5 85.7 204.6 56.1 34.5 195.1 4.6 35.9 58.1 126.5 38.2

Average – – – 37.3 – 20.7 – 50.5 – 40.9

introduced as an added feature to the support vector estimators. Here, the noise

analysis module of the ITU-T P.563 algorithm [50] is used to estimate the SNR. In a

controlled experiment, the estimated SNR is shown to be highly correlated with true

SNR; R = 0.96 is attained. Table 5.5 reports improvements in MSE and MAE for

adapted T60 estimators; as observed, adaptation substantially reduces estimation er-

rors. Relative to the adapted baseline, S̃VRs attains average improvements of 37.3%

in MSE and 20.7% in MAE. S̃VRl obtains average improvements of 50.5% and

40.9%, respectively. Improvements in R over the non-adapted estimators are consid-

erably lower – on the order of 7% – for all three estimators, thus are omitted from

the table.

5.5.5 Discussion

As can be seen from (5.14) and (5.15), the proposed measures are based on summing

per-band modulation energy over the 23 acoustic frequency channels. In order to

reduce algorithmic processing time, the critical-band gammatone filterbank can be



CHAPTER 5. MEASUREMENT FOR HANDS-FREE COMMUNICATIONS 133

omitted and per-band modulation energy can be computed over the entire 4 kHz

signal bandwidth. On our data, such a simplified configuration is capable of reducing

algorithmic processing time by a maximum of 40%. It has been observed, however,

that the reduced-complexity configuration lowers measurement performance by as

much as 20%, in particular for noise-corrupted environments and for enclosures with

low T60 (≤ 0.3 s). As a consequence, the reduced-complexity alternative should be

considered only if limited resources are available. Moreover, as will be described in

Section 5.6, the critical-band gammatone filterbank is useful for objective assessment

of perceived reverberation effects, thus has been kept in our experiments.

Additionally, we have experimented with two VAD algorithms. The first is avail-

able in the ITU-T G.729 speech codec [127] and the second in the adaptive multi-rate

(AMR) wireless speech codec [88]. For reverberant speech files used in Experiment 1

(Section 5.5.3), both VAD algorithms attained similar detection performance. On the

other hand, for noise corrupted speech files used in Experiment 2 (Section 5.5.4), the

AMR VAD attained improved detection performance, as expected. Notwithstanding,

for the purpose of blind room acoustics characterization, similar T60 measurement

performance is attained with either VAD algorithm, thus signalling the robustness of

the proposed measures to voice activity detection errors.

5.6 Quality Measurement for Reverberant and Dere-

verberated Speech

Recently, several double-ended objective quality measures were tested as estimators

of subjective perception of colouration (COL), reverberation tail effects (RTE), and
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overall quality (OVRL). It was reported that most measures attained poor correlation

with subjective listening quality scores (R ≤ 0.40), and the reverberation decay tail

measure attained the highest correlation (R = 0.62) with respect to RTE [22]. Such

poor performance signals the need for more reliable objective quality measures. Here,

long-term temporal dynamics information is investigated for single-ended objective

measurement of perceived (de)reverberation effects.

5.6.1 Dereverberation Effects on the Modulation Spectrum

As shown in Section 5.4.2, due to the reverberation tail effect, increased modulation

energy is observed for higher frequency modulation channels. To verify the effects

of multi-channel dereverberation on the modulation spectrum, reverberant speech

is generated by convolving 330 anechoic source speech signals with room impulse

responses measured by a linear microphone array in four different enclosures (T60

values of 274, 319, 422, and 533 ms); a delay-and-sum beamforming dereverberation

algorithm is used. The plots in Fig. 5.14 (a)-(b) depict the average per-modulation

band energy Ēk given by

Ēk =
1

23

23∑
j=1

Ēj,k, (5.19)

averaged over all signals, for modulation bands k = 1 and k = 7, respectively. The

plots depict modulation band energy of anechoic, reverberant, and dereverberated

speech processed by the delay-and-sum beamformer (represented by “DSB” in the

figure).

As seen from subplot (a), the modulation energy at low modulation frequencies

is reduced for reverberant and dereverberated speech signals. Such effects, however,

are shown to be relatively independent of T60 and are likely due to early reflections.
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Figure 5.14: Per-band modulation energy versus T60 for modulation frequency band
(a) k = 1, and (b) k = 7.
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On the other hand, reverberation time dependency is observed for higher frequency

modulation channels. From subplot (b), it can be seen that modulation energy in-

creases almost linearly with T60. Moreover, the delay-and-sum beamformer is shown

to reduce high-frequency modulation energy by approximately 1 dB relative to re-

verberant speech. Such gains, however, are quite modest, as an approximate 6.5 dB

difference remains between anechoic and dereverberated speech for T60 = 533 ms.

As mentioned previously, modulation frequency content for acoustic frequency

band j is upper-bounded by the bandwidth of critical-band filter j. Hence, speech

signals with different acoustic frequency content, subjected to the same quality-

degrading reverberation effects, may result in different modulation spectra. Plots

in Fig. 5.15 (a)-(b) illustrate one such example; subplots depict the percentage of

modulation energy present per acoustic frequency band for speech signals from two

different speakers with a reverberation time of 319 ms. As can be seen, for subplot

(a) 90% of the total energy is obtained below 575 Hz, whereas for subplot (b) 90% of

the total energy is obtained below 983 Hz. The bandwidths of the gammatone filters

centered at such frequencies are 86 Hz and 131 Hz, respectively. Hence, according

to Fig. 5.7 and Table 5.2, negligible energy at modulation frequency band k = 8 is

expected from the signal represented in subplot (a).

Using this insight, an “adaptive” measure termed speech to reverberation mod-

ulation energy ratio (SRMR) is proposed for single-ended quality measurement of

reverberant and dereverberated speech. The measure is given by

SRMR =

∑4
k=1 Ēk∑K∗
k=5 Ēk

(5.20)

and is adaptive as the upper summation bound K∗ in the denominator is dependent on

the speech signal under test. In our simulations, K∗ is chosen on a per-signal basis and
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Figure 5.15: Percentage of modulation energy per acoustic frequency band, for speech
signals from two different speakers.
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depends on the bandwidth of the lowest gammatone filter for which 90% of the total

modulation energy is accounted for. As examples, for the speech signals represented

in Fig. 5.15 (a)-(b), K∗ = 7 and K∗ = 8, would be used, respectively. To test

the performance of the proposed SRMR measure, a subjectively scored reverberant

speech database is used.

5.6.2 MARDY Database Description

A subjectively scored multi-channel acoustic reverberation database (MARDY) [22]

is used in our experiments. The database uses room impulse responses that were

collected with a linear microphone array in an anechoic chamber with reflective panels

and with absorptive panels in place. Speaker-to-microphone distances varied from one

to four meters (1-meter increments) and T60 values ranged from 291 ms to 447 ms.

Reverberant speech was generated with the collected room impulse responses and

anechoic speech from two speakers (one male and one female); additionally, three

dereverberation algorithms were used.

In the experiments described herein, only reverberant speech and speech processed

by a conventional delay-and-sum beamformer are used. Speech signals are digitized

with 16-bit precision and stored with a 16 kHz sampling rate. More detail regarding

the development of the MARDY database can be found in [22]. A subjective listening

test was performed following the guidelines described in [19]. In the test, 26 normal

hearing listeners rated the subjective perception of colouration (COL), reverberation

tail effect (RTE), and overall speech quality (OVRL). Listeners used a 5-point scale

where a rating of 5 indicated the best score and a rating of 1 the worst score for a

given category. Calibration speech examples were presented to the listeners in order to



CHAPTER 5. MEASUREMENT FOR HANDS-FREE COMMUNICATIONS 139

assist in identification and quantification of colouration and reverberation tail effects.

5.6.3 Experimental Results

The performance of the proposed measure is compared to that of four state-of-the-

art algorithms: two are double-ended, ITU-T wideband PESQ (W-PESQ) [160] and

PEMO-Q [161], and two are single-ended, ITU-T P.563 [50] and the American Na-

tional Standards Institute (ANSI) ANIQUE+ algorithm [78]. For the P.563 and

ANIQUE+ algorithms, a downsampled (8 kHz) version of the MARDY database is

required. We experiment with the narrowband and wideband gammatone filterbanks

depicted in Fig. 5.6; the latter is used as it attained somewhat improved performance.

Table 5.6 reports correlation values (R) attained between subjective scores and

quality scores obtained with the four quality measurement algorithms and the pro-

posed SRMR measure. Additionally, to demonstrate the gains obtained with the

adaptive SRMR measure, a comparison is also carried out with a non-adaptive mea-

sure. Denoted by SRMR* in the table, the non-adaptive version uses a fixed K∗ = 8

value for all speech signals. The column labeled “%R ↑” lists the “R-improvement,”

given by (2.12), obtained by using the proposed SRMR measure.

As observed, the proposed measure is shown to reliably estimate the three quality

dimensions for both reverberant and dereverberated speech. Overall, SRMR is shown

to outperform state-of-the-art double- and single-ended algorithms by an average 53%,

46%, and 42% for COL, RTE, and OVRL, respectively. Additionally, improvements

in performance of 36%, 17%, and 12% are attained relative to SRMR* for all data;

more significant gains are obtained for dereverberated speech data. ANIQUE+ is

shown to slightly outperform SRMR in OVRL prediction for reverberant speech.
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Table 5.6: Performance comparison between SRMR, SRMR*, W-PESQ, PEMO-Q,
P.563, and ANIQUE+ on MARDY database. Average improvement is computed over
the four quality measurement algorithms.

Overall (reverberant+dereverberated) Reverberant

Algorithm COL %R ↑ RTE %R ↑ OVRL %R ↑ COL %R ↑ RTE %R ↑ OVRL %R ↑

SRMR 0.82 – 0.83 – 0.80 – 0.81 – 0.84 – 0.81 –
SRMR* 0.73 36.2 0.80 16.6 0.77 12.1 0.73 28.8 0.83 5.9 0.81 0.0
W-PESQ 0.66 48.3 0.81 8.9 0.72 26.0 0.66 44.1 0.82 11.4 0.70 37.3
PEMO-Q 0.61 55.6 0.53 64.1 0.48 61.2 0.70 37.4 0.61 59.9 0.56 56.9

P.563 0.44 68.7 0.46 68.4 0.35 68.6 0.38 69.5 0.41 73.4 0.31 72.7
ANIQUE+ 0.72 38.2 0.70 42.6 0.77 12.2 0.77 17.9 0.76 34.7 0.84 -15.3
Average – 52.7 – 46.0 – 42.0 – 42.2 – 44.9 – 37.9

Delay-and-sum

Algorithm COL %R ↑ RTE %R ↑ OVRL %R ↑

SRMR 0.85 – 0.83 – 0.79 –
SRMR* 0.72 45.8 0.75 33.7 0.72 22.1
W-PESQ 0.67 55.2 0.83 3.8 0.78 4.0
PEMO-Q 0.52 69.1 0.47 68.7 0.38 65.5

P.563 0.54 67.7 0.50 66.4 0.40 64.0
ANIQUE+ 0.67 54.7 0.57 61.5 0.67 34.5
Average – 61.7 – 50.1 – 42.0
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Nonetheless, the capability of the proposed measure to reliably estimate colouration

and reverberation tail effects, in addition to overall quality, make it a better candidate

for single-ended evaluation of reverberant speech and of dereverberation algorithms.

5.7 Conclusions

In this chapter, temporal dynamics information has been proposed to construct blind

estimators of room acoustic parameters, namely, reverberation time and direct-to-

reverberation energy ratio. Estimators, based on short- and long-term temporal dy-

namics information, are shown to outperform a baseline system using reverberant

speech data with and without the presence of acoustic background noise. More-

over, an adaptive speech-to-reverberation modulation energy measure is proposed

and shown to reliably estimate perceived room reverberation effects such as coloura-

tion and reverberation tail effects in addition to overall quality. The performance of

the proposed measure is compared to that of four state-of-the-art quality measure-

ment algorithms and substantial improvement is observed for both reverberant and

reverberation-suppressed speech.



Chapter 6

Quality Measurement for Text-to-

Speech Systems

6.1 Preamble

This chapter is compiled from material extracted from a manuscript published in the

IEEE Signal Processing Letters [87]. Some of the insights described herein have been

reported in the Proceedings of the 2008 Blizzard TTS Challenge Workshop [162] and

as a contribution to the International Telecommunications Union [163].

6.2 Introduction

Text-to-speech (TTS) synthesis, as the name suggests, attempts to convert arbitrary

input text into intelligible and naturally sounding speech. Earlier applications of TTS

systems served mostly as an aid to the visually impaired. Today, TTS systems are

also being applied in email and short message service readers, automated directory

142
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assistance, foreign language education [9], and assistive and augmentative communi-

cations [10]. As new applications emerge, the need to deliver high-quality synthesized

speech increases. As such, the demand for methods to evaluate the quality of TTS

systems has also risen. Evaluation of synthesized speech, however, is not an easy task

as various quality dimensions can be assessed (e.g., naturalness, intelligibility). Com-

monly, multidimensional subjective listening quality tests, such as the one described

in ITU-T P.85 [23], are used. For applications such as TTS system tuning, however,

several tests may be required throughout the development process; thus subjective

assessment is not feasible and objective quality measurement is needed.

To date, there is no universally accepted signal-based objective quality measure

for synthesized speech. Most available measures are for corpus-based concatenative

TTS systems where a natural speech corpus is available (refer to Section 1.2.1.1). In

practice, however, natural speech corpora may not be available (e.g., with vocoder-

based TTS systems); in such instances, a “reference-free” signal-based measure is

required. As described in Chapter 1, reference-free (i.e., single-ended) quality mea-

surement algorithms have been proposed for natural speech (e.g., ITU-T P.563 and

ANSI ANIQUE+). To the best of our knowledge, a signal-based reference-free quality

measure for synthesized speech has yet to emerge. Notwithstanding, the aforemen-

tioned single-ended ITU-T and ANSI standard algorithms were tested on synthesized

speech transmitted over different telephone channels [52]. While the measures were

shown to estimate the effects of the transmission channel, poor estimation of source

speech quality was attained, signaling the need for an objective quality measure for

synthesized speech.

In this chapter, the first steps towards devising a general-purpose reference-free
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measure for TTS system quality diagnosis are described. In particular, hidden Markov

models are used to devise text- and speaker-independent artificial reference models

of naturally produced speech-feature behavior. Perceptual features, extracted from

synthesized speech, are then assessed against gender-dependent reference models by

means of a normalized log-likelihood measure. The degree of “consistency” with the

reference models is proposed as a measure for multidimensional quality diagnosis. The

remainder of this chapter is organized as follows. Section 6.3 describes the signal pro-

cessing steps needed to compute the proposed quality measure. Section 6.4 describes

the databases used in our tests and reports the experimental results. Conclusions are

presented in Section 6.5.

6.3 Proposed HMM-Based Quality Measure

The signal processing steps involved in the computation of the proposed HMM-based

quality measure are depicted in Fig. 6.1. Pre-processing is first performed to match

the characteristics of the signals used to develop the reference models. Voice activ-

ity detection (VAD) is then performed on the pre-processed speech signal to remove

silence intervals longer than an empirically set value. The feature extraction module

serves to compute perceptual and prosodic features; the latter are used to identify

talker gender. Pilot experiments have suggested that improved performance is at-

tained if gender-dependent reference models are used. Lastly, perceptual features are

assessed against offline-obtained reference hidden Markov models of natural speech-

feature behavior via a normalized log-likelihood measure. A detailed description of

the signal processing steps is given in the subsections to follow.



CHAPTER 6. QUALITY MEASUREMENT FOR TTS SYSTEMS 145

TTS system output

extraction

log−likelihood

Normalized HMMReference

Feature

Pre−processing

and VAD

(male/female)

z

Fgender

LL

Figure 6.1: Signal processing steps involved in the computation of the proposed HMM-
based quality measure. Separate hidden Markov reference models of natural speech-
feature behavior are used for male and female speech.

6.3.1 Pre-Processing, VAD and Feature Extraction

In order to match the characteristics of the signals used to train the reference models,

pre-processing is applied to the TTS system output. Representative pre-processing

steps can include resampling, filtering, and/or signal level normalization. In our

experiments, pre-processing consists of bandpass filtering according to [164], down-

sampling to 8 kHz, and level normalization to -26 dBov (dB overload) using the P.56

speech-level meter [114]. Moreover, since we are interested in measuring the quality

of the output of a TTS system, only active speech segments are analyzed. In our

experiments, a simple energy thresholding VAD algorithm is used to remove silence

intervals longer than 75 milliseconds; such duration is empirically chosen so as to

avoid “artificial” discontinuities introduced by possible VAD errors.
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Perceptual features are then computed from active speech; features include 12th

order mel-frequency cepstral coefficients (MFCC). The notation cm = {ci,m}12
i=0 is

used to represent MFCC computed for speech frame m. In our experiments, MFCCs

are computed using 25 millisecond windows and 10 millisecond shifts. The zeroth or-

der cepstral coefficient c0,m is used as a log-energy measure. A basic assumption used

in this study is that, for natural speech, abrupt changes in signal energy do not occur.

Such discontinuities, however, can occur in, e.g., speech produced by a concatenative

TTS system. In order to quantify signal energy dynamics, we compute the zeroth

delta-cepstral coefficient ∆c0,m, which has been shown useful for temporal disconti-

nuity detection [74]. Feature ∆c0,m is appended to cm to form zm = [∆c0,m, cm]. In

Fig. 6.1, z constitutes features computed for the Nact active frames in the synthesized

speech signal, i.e., z = {zm}Nact
m=1.

Lastly, the fundamental frequency F0 is computed with the pitch tracking algo-

rithm described in [89]. F0, averaged over all voiced frames, is used to identify talker

gender. In pilot experiments, it has been observed that improved quality measurement

performance is attained if gender-dependent reference models are used. Motivated by

the work described in [50], F0 = 160 Hz is used as a threshold to distinguish between

male and female voices. A flag indicating talker gender, represented by Fgender in

Fig. 6.1, is used to indicate which HMM reference model to use.

6.3.2 HMM Reference Models and Log-Likelihood Compu-

tation

Speech temporal dynamics provides important information for the measurement of

synthesized speech quality and naturalness. As such, we propose to use hidden
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Markov reference models trained on naturally-produced speech. The spectral-temporal

information captured by the HMM can be used to quantify differences between e.g.,

natural word endings and abnormal signal interruptions that may occur with synthe-

sized speech. Reference models are obtained using the perceptual features z described

in Section 6.3.1. Features are extracted from the natural speech data described in

Section 6.4.1.1 and two reference models are designed, one for male and one for female

speech data.

Hidden Markov models have been widely used in speech processing with appli-

cations ranging from automatic speech recognition [165] to noise suppression [20].

The reader is referred to [165–167] for a more comprehensive review of HMMs and

their applications. Here, HMMs with 8 states are used and the output distribu-

tion of each state consists of a Gaussian mixture density with 16 diagonal-covariance

Gaussian components. Model parameters, such as state transition probabilities, ini-

tial state probabilities, and output distribution parameters, are computed using the

expectation-maximization algorithm summarized in [165]. Perceptual features, ex-

tracted from the synthesized signal under test, are then assessed against the reference

models via the log-likelihood measure. Log-likelihood values are computed using the

so-called forward-backward procedure described in [165]; more detail can be found in

[168]. Normalization is performed based on the number of active-speech frames Nact

in the signal under test. Note that the log-likelihood measure, referred to as LL in

Fig. 6.1, is analogous to the so-called consistency measure described in (2.5).
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6.4 Experiments

In this section, a description of the databases used in our tests and the experimental

results are reported.

6.4.1 Database Description

A description of the naturally-produced and synthesized speech databases used in

our experiments is given in the subsections to follow. Natural speech is used to

train gender-dependent HMM reference models and synthesized speech to assess the

performance of the proposed quality measure.

6.4.1.1 Natural Speech – Training Data

In order to develop reference models of natural speech-feature behavior, the Kiel Cor-

pus of German read speech is used. Files from the “Siemens” and “Erlangen” sentence

subsets, uttered by two male and two female speakers, are used. Visual inspection of

spectrograms and pitch contours was used to select speakers with spectral-temporal

characteristics different from those in the synthesized speech database. The files

are downsampled to 8 kHz, bandpass filtered according to [164], level normalized

to -26 dBov, and VAD-processed. Per-gender files are concatenated to produce ap-

proximately one hour and 15 minutes of active speech to train the male and female

reference HMMs. It is emphasized that the sentences uttered in the training speech

dataset differ from the text used to generate the synthesized speech material.
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6.4.1.2 Synthesized Speech – Test Data

The synthesized speech database used in our experiments contains speech material

from six “off-the-shelf” TTS systems. Three are commercial systems (AT&T, Proser,

and Cepstral) and three are from German academic institutions (TU Dresden, TU

Berlin, and University of Bonn). Synthesized speech material is produced from the

TTS system online demonstration tool. For quality measurement purposes, this ex-

emplifies the scenario where the natural speech corpus is not available. A total of

10 speech samples are generated per TTS system, half for male speakers and half for

female. The synthesized speech samples have an average duration of 11 seconds and

consist of two utterances separated by a silence interval of approximately two sec-

onds. Speech samples were bandpass-filtered according to [164] and level-normalized

to -26 dBov prior to listener presentation.

The listening test closely followed the recommendations in ITU-T P.85 [23] and

was performed in a silent listening room at the Institute for Phonetics and Digital

Speech Processing at Christian-Albrechts-University of Kiel [169]. Seventeen listeners

(10 female, 7 male) participated in the test; all were German students and the age

ranged from 20-26. Listeners were given a parallel task and asked to rate the synthe-

sized speech signals using eight quality scales. Of the eight scales used, only five are

described in ITU-T P.85. Labels of the eight scales used include: overall impression

(MOS), listening effort (LSE), comprehension problems (CMP), articulation (ART),

naturalness (NAT), prosody similarity with natural speech (PRO), continuity/fluency

(CFL), and acceptance (ACC). Table 6.1 reports the rating scales for dimensions

NAT, PRO, and CFL; scales for the five remaining dimensions are described in Sec-

tion 1.1.2. More details regarding the database can be found in [169].
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Table 6.1: Rating scales used in the listening test not described in [23]. Original
wordings in German are reported in [169].

Rating NAT PRO CFL

5 Very natural Very similar Very fluent
4 Natural Similar Fluent
3 Neutral Somewhat similar Neutral
2 Unnatural Dissimilar Discontinuous
1 Very unnatural Very dissimilar Very discontinuous

6.4.2 Experiment Results

To test the performance of the proposed quality measure, Pearson correlation R,

attained between LL and the various quality dimensions, is used and computed ac-

cording to (2.10). Table 6.2 reports “per speech sample” correlation coefficients at-

tained for the eight quality dimensions for male and female speech data, considered

either separately or jointly; the latter is represented by the column “overall” in the

table. For comparison purposes, correlation coefficients attained with the state-of-

the-art ITU-T P.563 algorithm are also reported. It is emphasized, however, that

synthesized speech does not fall within the recommended scope of the standard P.563

algorithm. Unfortunately, no other signal-based reference-free measures are available

for comparison.

As observed from the table, the proposed HMM log-likelihood measure corre-

lates well with several quality dimensions, in particular with MOS, NAT, and CFL.

Interestingly, LL computed for male speech obtains considerably higher correlation

values, relative to female speech, for quality dimensions CMP and ART. In turn,

higher correlation is attained with female data for dimension PRO. Relative to P.563,

substantially higher correlation values are attained with the proposed LL measure.
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Table 6.2: Performance comparison between LL and ITU-T P.563 on eight synthesized
speech quality dimensions.

Quality Proposed LL ITU-T P.563

dimension Male Female Overall Male Female Overall

MOS 0.81 0.72 0.77 0.58 -0.05 0.24
LSE 0.72 0.64 0.65 0.50 0.02 0.20
CMP 0.70 0.45 0.54 0.42 -0.11 0.05
ART 0.74 0.47 0.55 0.53 -0.06 0.11
NAT 0.81 0.80 0.81 0.48 -0.06 0.24
PRO 0.54 0.72 0.61 0.28 -0.18 0.12
CFL 0.74 0.81 0.74 0.51 0.06 0.24
ACC 0.65 0.71 0.67 0.35 -0.10 0.15

Note also that poor correlations are attained with P.563 for female synthesized speech;

such intriguing behavior has also been reported in [162, 163] for synthesized speech

transmitted over noisy telephone channels.

Furthermore, the work described in [170] suggests cross-gender differences in the

subjective perception of synthesized speech quality. In an attempt to compensate for

such listener rating “biases,” a monotonic polynomial mapping function is applied

between LL and the subjective quality scores. Monotonic mappings perform scale

adjustments but do not alter the ranking of the estimated scores. Table 6.3 reports

correlation coefficients attained after third-order polynomial regression. As can be

seen, a slight improvement in performance is attained after regression; for P.563

predictions, poor correlations remain for female speech.

Ultimately, the aim in objective quality measurement is to develop a measure

that ranks similarly with subjective quality ratings. To this end, Spearman rank

correlation (RS) is computed and used as an additional figure of merit. On our data,

the proposed LL measure attains RS = 0.76 and RS = 0.70 for male and female data,
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Table 6.3: Performance comparison between LL and ITU-T P.563 after third-order
polynomial regression.

Quality Proposed LL ITU-T P.563

dimension Male Female Male Female

MOS 0.83 0.74 0.65 0.05
LSE 0.74 0.70 0.59 0.07
CMP 0.72 0.56 0.48 0.02
ART 0.78 0.57 0.62 0.01
NAT 0.84 0.83 0.59 0.20
PRO 0.61 0.72 0.39 0.07
CFL 0.79 0.82 0.61 0.07
ACC 0.70 0.73 0.47 0.03

respectively, for quality dimension MOS. For comparison, P.563 attains RS = 0.57

and RS = 0.03, respectively.

6.4.3 Discussion

While the proposed measure is shown to correlate well with several quality dimensions,

it is inferred that further performance gains can be attained if additional features

are used in combination with LL. Representative features can include the mean

cepstral deviation (σ̄) – used as a measure of spectral flatness – which has also been

shown useful for spoken dialogue system evaluation [79]. On our data, mean cepstral

deviation attains correlation values of -0.64, -0.62, and -0.61 with LSE, CMP, and

NAT, respectively (for female speech). Moreover, a sharp decline measure, similar

to the one described in [50], is shown to attain correlation values of -0.56, -0.57, and

-0.62 with CMP, PRO, and CFL, respectively (for male speech). Feature combination,

however, requires access to multiple subjectively scored speech databases in order to

optimize feature weights, hence is left for a future study.
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6.5 Conclusion

This chapter has described an initial effort at developing a general-purpose single-

ended measure for text-to-speech system quality diagnosis. The proposed measure is

based on text- and speaker-independent hidden Markov reference models of naturally

produced speech and is shown to attain promising results on a multidimensional

quality prediction test for both male and female synthesized speech.



Chapter 7

Discussion

In this chapter we discuss and summarize the main results in Chapters 2-6 and their

contributions to objective speech quality measurement research and to alternate re-

search fields.

7.1 General-Purpose Speech Quality Measurement

In Chapter 2, a general purpose quality measurement algorithm is constructed from

models of speech signals, including clean and degraded speech, and speech corrupted

by multiplicative noise and temporal discontinuities. The algorithm has redefined the

performance envelope of existing schemes, as it has pioneered the use of:

1. Gaussian mixture densities to model the normative behaviour of speech features,

thus allowing for accurate low complexity speech quality measurement;

2. Algorithms to detect and quantify spectral flatness related distortions commonly

encountered with logarithmically companded PCM, ADPCM, and various other

154
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waveform speech coders;

3. Algorithms to detect and quantify temporal discontinuity distortions commonly

encountered with VoIP communications and with speech communications that

involve voice activity detection;

4. Advanced pattern recognition algorithms to judiciously combine, using hard or

soft decisions, the contributions of the detected distortions to overall speech

quality.

Moreover, the algorithm described in Chapter 2 makes use of reference GMMs

for clean speech as well as speech degraded by different transmission and/or cod-

ing schemes. With modern speech communications, however, signals are subjected

to various different sources of degradation, each with its own peculiar impairment to

voice quality. As such, if degradation sources can be accurately identified, appropriate

degraded speech reference models can be used to improve quality measurement per-

formance. In [81], perceptual features and Gaussian mixture models are investigated

for the classification of four modern degradation sources: acoustic background noise,

packet loss concealment artifacts, low bitrate coding artifacts, and codec tandeming

artifacts. On an unseen test set, the proposed classifier is shown to attain a 98.9%

correct identification accuracy [81].

For real-time quality monitoring purposes, knowledge of the degradation source

can be used to improve speech quality measurement performance. Due to the modular

architecture of the algorithm described in Chapter 2, degradation classification can

be easily incorporated to allow for “degradation classification-assisted” speech qual-

ity measurement, as depicted in Fig.7.1. The research described in [82] proposes to

use degradation-specific reference GMMs and MOS mapping functions for enhanced
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Figure 7.1: Architecture of degradation classification-assisted speech quality measure-
ment algorithm.

speech quality measurement. Experiments show an increase of 10.2% in R and a

decrease of 17.6% in RMSE relative to using a “global” degraded-speech reference

model, as proposed in Chapter 2. Degradation classification can be used not only

to improve quality measurement performance, but can also be used for network di-

agnosis purposes. In fact, ITU-T has recently initiated an effort to standardize an

improved speech quality measurement algorithm termed “objective listening quality

assessment,” or P.OLQA [171]. The improved algorithm is expected to provide an

optional functionality of degradation identification and classification.

7.2 Noise-Suppressed Speech Quality Measurement

In Chapter 3, two architectures are proposed for quality measurement of noise sup-

pressed speech. The first configuration consists of a network-distributed speech quality
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measurement architecture that subsumes existing single- and double-ended quality

measurement paradigms. The method improves on current double-ended architec-

tures as it allows for degraded input signals and output signals with quality better

than the input, thus, is equipped to handle both quality degradations and quality

enhancements. Moreover, the proposed architecture allows for diagnosis of the system

under test as well as characterization of noise suppression performance. All of the

aforementioned functionalities are not available with existing double- or single-ended

paradigms.

The second configuration builds on the work described in Chapter 2 to propose

a low complexity single-ended quality measurement algorithm for noise suppressed

speech. Experiments have shown that in a perceptual speech feature domain distances

to reference models of clean, noisy, and noise-suppressed speech are indicative of

overall quality. In the work described in Section 3.4, distances between models are

computed by means of a fast approximation of the Kullback-Leibler distance. Since

Kullback-Leibler distances provide no sense of “direction,” three models are used

to allow for triangulation. With both aforementioned configurations, the proposed

algorithms perform multidimensional objective speech quality measurement and three

quality dimensions, namely, signal distortion, background intrusiveness, and overall

quality, are estimated.

Additionally, the insights obtained with the proposed KLD measures can be used

for applications other than speech quality measurement. One such application is blind

detection of noise and noise suppression artifacts to test the applicability of conven-

tional double-ended algorithms. Using the perceptual feature properties described in

Section 3.4.1.2, a simple test-of-concept experiment is conducted. In the experiment,
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a three-node classification tree [97] is designed to detect whether a signal is noisy

or if it has been processed by a noise suppression algorithm. The classification tree

is trained using KLDs computed between the online derived GMM and the three

reference GMMs, for both active and inactive speech frames. The designed tree is

tested on 96 unseen speech signals: 48 are noise-suppressed signals and 48 are signals

corrupted by babble and car noise at 0 dB and 5 dB. In this experiment, all 96 signals

were correctly classified.

7.3 Hybrid Measurement for Wireless-VoIP Com-

munications

In Chapter 4, the performance of standard single-ended objective quality measure-

ment algorithms is investigated for speech degradations representative of those present

in emerging wireless-VoIP communications. It is shown that current signal-based

measurement algorithms are sensitive to different VoIP impairments (e.g., packet loss

rates) and produce large per-sample quality estimation errors and error variance.

Additionally, link parametric methods are shown to be sensitive to distortions that

are not captured by connection parameters, such as those present in wireless com-

munication services (e.g., acoustic noise suppression artifacts). In order to overcome

such limitations, a hybrid signal-and-link-parametric measurement algorithm, which

combines the strengths of pure signal-based and pure link parametric measurement

paradigms, is proposed.

With VoIP communications, pure link parametric methods have gained popular-

ity due to their low computational complexity. In Section 4.6, a “codec-integrated”
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quality measurement paradigm is described that allows for features and voice activity

decisions computed by the speech decoder to be shared with the quality measurement

algorithm. With such integrated processing, approximately 90% lower computational

processing time is attained relative to the standard signal-based ITU-T P.563 algo-

rithm.

7.4 Quality Measurement for Hands-Free Speech

Communications

In Chapter 5, several contributions to quality diagnosis for hands-free speech com-

munications are described. With far-field hands-free speech communications, room

reverberation acts as a major performance degrading factor for applications such as

speech/speaker recognition, pitch tracking, and speaker separation, to name a few.

With such applications, if room acoustics characteristics are known beforehand, sig-

nal processing strategies can be adapted to improve algorithm performance (see e.g.,

[172]). In practice, however, online estimation of room acoustical parameters is re-

quired, thus signal-based measures are needed.

In Section 5.4, short- and long-term temporal dynamics information is used for

blind characterization of room acoustics, in particular, to develop estimators of the

room reverberation time. Long-term temporal dynamics information is obtained by

means of a spectro-temporal signal representation in which speech and reverberation

tail effects are shown to be separable. Using this separability property, a signal-based

estimator of the room direct-to-reverberation energy ratio is also proposed.
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Moreover, as emphasized in [22, 173], current objective speech quality measures at-

tain poor performance when used with reverberant and dereverberated speech signals.

In fact, since a reliable objective measure for dereverberated speech is non-existent,

researchers currently rely on word error rates produced by state-of-the-art automatic

speech recognizers to characterize the “quality” of dereverberated speech [174]. In

order to fill this gap, a multidimensional objective quality measure is proposed for

reverberant and reverberation-suppressed speech. The estimated quality dimensions

include colouration, reverberation tail effects, and overall quality. Moreover, the in-

sights obtained from this work have been successfully applied to environment-robust

automatic speaker recognition [175], as described below.

Pilot experiments have suggested that energy envelopes obtained across acous-

tic frequencies, for the first four modulation frequency channels (i.e., in accordance

with normative speech behavior, as described in Section 5.4.2), resemble spectral

envelopes obtained from higher-order linear prediction (LP) analysis of the speech

signal; Fig. 7.2 assists in illustrating this effect. Fig. 7.2 (a) depicts the LP envelope

obtained from 20th order LP analysis while Fig. 7.2 (b) depicts the energy envelope

obtained across acoustic frequencies for the modulation frequency channel centered

at 4 Hz, corresponding to the syllabic rate of spoken speech [158]. As can be seen,

visual resemblance is clear and similar peaks and peak positions are found, although

not in magnitude. This insight has been used to devise a robust far-field automatic

speaker identification (ASI) engine [175].

Today, most state-of-the-art ASI systems are based on mel-frequency cepstral

coefficients. As emphasized in [172, 176, 177], however, ASI performance degrades

substantially in hands-free far-field applications. Commonly, either dereverberation
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(a)

(b)

Figure 7.2: Illustration of similarity between LP envelope and modulation energy
envelope. Subplot (a) depicts LP envelope obtained from 20th order LP analysis, and
subplot (b) depicts the energy envelope obtained across acoustic frequencies for the
first modulation frequency channel.
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algorithms or techniques such as cepstral mean subtraction and variance normaliza-

tion [178] are used prior to speaker recognition in order to improve performance.

As described in [175], however, the improvements attained with such techniques are

minimal, in particular if the room reverberation time is high (T60 > 0.5 s). Using the

insights described in Section 5.4.2, perceptual features are proposed based on infor-

mation extracted from the first four modulation frequency channels. Experiments

described in [175, 179] serve to demonstrate that an ASI engine based on the pro-

posed spectro-temporal features can outperform an ASI engine based on MFCC by

as much as 85% for large rooms with a reverberation time of approximately T60 = 1 s.

An average improvement in identification accuracy of 15% is attained for T60 ranging

from 0.2 s to 1 s.

7.5 Quality Measurement for Synthesized Speech

In Chapter 6, the first steps towards the development of a reference-free signal-based

quality measurement algorithm for synthesized speech are described. Signal-based

quality measures available today are for corpus-based concatenative TTS systems

where the natural speech corpus is available. Such measures, however, are only useful

if perceptual degradations are linked to concatenation effects and/or if a reference

natural speech corpus is available. Since such requirements are not always met in

practice, a reference-free measure is required. In order to fill this gap, the algo-

rithm described in Chapter 2 is modified and adapted for synthesized speech signals.

Since temporal dynamics information provides important cues regarding the quality

and naturalness of synthesized speech, hidden Markov reference models are used in

lieu of Gaussian mixture models. Moreover, in pilot experiments, it is observed that
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improved performance is attained if gender-dependent reference models are used. Ex-

periments with subjectively scored synthesized speech data, described in Section 6.4,

show that the proposed normalized log-likelihood measure attains promising esti-

mation performance for several quality dimensions, in particular dimensions labeled

overall impression, listening effort, naturalness, continuity/fluency, and acceptance.



Chapter 8

Conclusions and Future Research

Directions

In this chapter, conclusions of this dissertation are drawn and suggestions for future

research directions are presented.

8.1 Conclusions

The evaluation of speech quality is of critical importance in today’s technology-

mediated speech communications systems, mainly because perceived quality is a key

determinant of customer satisfaction. With the fast-paced society we live in, mobility,

multi-tasking, and low-cost have become the driving forces behind the advances in

wireless, VoIP and hands-free telephony, as well as text-to-speech systems. With these

emerging technologies come new sources of degradations and of unwanted percep-

tual artifacts. With wireless applications, background noise has become a significant

impairment and, as a consequence, noise suppression algorithms have gained wide

164
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popularity and are present in most recent speech codec standards (e.g., [88, 180]).

With VoIP applications, retransmission is not a viable option, thus packet losses

have become a major source of quality degradation. To reduce such distortions, packet

loss concealment algorithms are employed. Moreover, with far-field hands-free com-

munications, reverberation and noise have become major quality degradation factors.

Due to the adverse effects reverberation has on e.g., automatic speech recognition

applications, research into dereverberation algorithms is on the rise. Additionally,

while burgeoning text-to-speech synthesis technologies have improved the quality and

naturalness of synthesized speech, state-of-the-art systems are still not capable of syn-

thesizing speech that is indistinguishable from naturally produced speech [43].

With the aforementioned technological advancements, users are experiencing new

types of distortions and perceptual artifacts. As shown throughout this dissertation,

the performance of current state-of-the-art objective speech quality measurement al-

gorithms is compromised for such modern speech communication applications. Since

machine-based objective speech quality measurement provides a low-cost means for

online quality monitoring and control purposes, more accurate estimators are needed.

In this dissertation, several advanced quality measurement algorithms have been pro-

posed and described in detail.

First, a general-purpose speech quality meter is proposed and presented in Chap-

ter 2. The algorithm is based on Gaussian mixture reference models of normative

speech behaviour and on innovative techniques to detect and measure multiplicative

noise and temporal discontinuities. The algorithm serves as a foundation for the algo-

rithms proposed in subsequent chapters. In Chapter 3, the algorithm is first employed
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in a network-distributed manner, thus allowing for both quality degradations and en-

hancements to be handled. It is further expanded to incorporate models of clean,

noisy, and noise-suppressed speech, thus allowing for reliable quality measurement

for wireless communications with noise suppression capabilities.

In Chapter 4, the algorithm is modified to allow for accurate quality measure-

ment for emerging wireless-VoIP communications. More specifically, a hybrid signal-

and-link-parametric measurement paradigm is proposed. Packet switching network

parameters are used to estimate a base quality which, in turn, is adjusted according

to signal-based distortions measured from the speech signal. The proposed hybrid

methodology is shown to overcome the limitations of existing pure signal-based and

link parametric algorithms whilst incurring negligible computational overhead.

An alternate scenario, addressed in Chapter 5, is that of far-field hands-free speech

communications, where room reverberation acts as a major quality degradation factor.

A reverberation-to-speech modulation energy measure is proposed and used for blind

characterization of room acoustics. More specifically, the measure is used to derive

estimators of the room reverberation time and direct-to-reverberation energy ratio

parameters. Furthermore, an adaptive version of the measure is implemented and

shown to be a reliable estimator of subjective perception of colouration, reverberation

tail effects, and overall quality.

Lastly, a general-purpose quality measurement algorithm for synthesized speech is

proposed and described in Chapter 6. Text- and speaker-independent Hidden Markov

models, trained on naturally-produced speech, are used to capture normative speech

spectral-temporal information. A log-likelihood measure, computed from perceptual

features extracted from the synthesized speech signal and the reference models, is
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proposed and shown to attain promising results on a multidimensional quality test.

8.2 Future Research Directions

• Wideband Speech Quality Measurement: Current advances in high-fidelity au-

dio/speech coding and wideband signal extension, combined with the rise of ca-

ble and fiber optic networks, will soon allow for widespread use of high-fidelity

or wideband telephony. Many of the existing algorithms have been optimized for

narrowband speech quality measurement. The first attempt to extend ITU-T

PESQ to wideband speech quality measurement is discussed in [160]. Tests

using wideband PESQ (W-PESQ) are carried out in [181] and it is shown that

W-PESQ accuracy is dependent on the speech codec under test. ITU-T efforts

are currently under way to standardize a wideband speech quality measurement

algorithm [171] and to extend the E-model [67, 182]. As a consequence, wide-

band speech quality measurement should be an area that will receive significant

efforts in the years to come. While the algorithms proposed here have been

optimized for narrowband speech, it is believed that the paradigms proposed

in Chapters 2-4 and Chapter 6 can be extended to wideband speech. Possible

changes include the use of higher-order PLP/MFCC coefficients and retrain-

ing of the GMM/HMM reference models; such changes, however, require access

to subjectively scored wideband speech data, thus are left for future study.

Notwithstanding, as described in Chapter 5, the proposed “wideband” SRMR

measure attains accurate quality measurement performance.

• Quality-Aware Signal Processing and Communications: Quality-aware signal
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processing makes use of objective quality measures to systematically adjust al-

gorithm parameters in real-time in order to maximize end-user quality percep-

tion. Standard noise suppression algorithm parameters are commonly optimized

offline using expert listeners in order to maximize perceptual quality for a given

noise type (e.g., street noise). With wireless communications, however, users

are mobile and different noise types and levels are experienced throughout the

duration of a phone call. It is expected that online adjustment of algorithm

parameters will maximize noise suppression and will improve user experience.

Dereverberation algorithms, on the other hand, rely on multi-microphone pro-

cessing or on inverse filtering techniques. Parameters are tuned offline or are

adjusted online based on mean-square error optimization. Online parameter

adaptation by means of a perceptual quality measure is likely to lead to im-

proved quality. Similarly, quality-aware communications can perform online

quality monitoring to control network transmission parameters in order to opti-

mize rate-quality performance. The proposed quality measures can be explored

to systematically adjust noise suppression, dereverberation, and text-to-speech

algorithm parameters in real-time, as well as to systematically adapt network

transmission parameters.

• Objective Quality Measurement for the Hearing Impaired: With a rapidly aging

population, it is expected that hearing impairments will affect over 20% of the

Canadian population by 2020. Currently, user dissatisfaction with commercially

available hearing aids is fairly high, thus exacerbating the need for improved

signal processing algorithms for the hearing impaired. The design of an objective

speech quality measure, tuned to impaired listeners, would be a first step in this
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direction. The perceptual quality measures proposed in Chapters 2-4 make use

of signal processing techniques that emulate the behavior of normal human

hearing. In particular, psychoacoustic concepts such as critical band spectral

analysis, equal loudness mapping, and intensity-to-loudness power mappings

are modeled. For hearing impaired listeners, such precepts are not accurate

and need to be updated in order to account for, e.g., sensorineural impairments.

Future research into quality measurement for the hearing impaired should focus

on adjusting the proposed quality measures to incorporate models of impaired

listening. The adapted quality measure can be used to objectively evaluate

hearing aids as well as to assist in hearing aid fitting. A longer-term goal can

be the development of quality-aware noise suppression algorithms to improve

speech reception for hearing aid users in adverse listening environments.

• Non-Invasive Disordered Speech Quality Diagnosis: Dysphonia is a disorder of

the speech production mechanism in the larynx with perceptual, acoustic, and

physical correlates. Persons suffering from dysphonia often experience low self-

esteem, shyness, and poor public speaking skills. Speech disorders are commonly

diagnosed by means of invasive stroboscopic evaluations and by subjective eval-

uation of voice production “quality.” With the latter, the so-called GRBAS

(grade, roughness, breathiness, asthenicity, and strain) test is commonly used

where each parameter is scored using a four-point rating scale ranging from 0

denoting normality to 3 denoting extreme pathology. These approaches are time

and labour intensive and lack objectivity. Objective measures, in turn, can be

used for surgical and/or pharmacological treatment evaluation and for patient

rehabilitation monitoring. It is known that the human voice exhibits acoustic
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evidence of underlying voice disorders through acoustic amplitude fluctuations.

As such, amplitude modulation analysis has been used for non-invasive objective

speech disorder detection and classification. It is expected that improved perfor-

mance be attained if spectro-temporal models, such as those used in Chapter 5,

are used to exploit amplitude modulations in the voice signal.

• Objective Image/Video Quality Measurement: Machine-based algorithms allow

computer programs to automate image/video quality measurement in real time,

thus playing a crucial role in applications such as compression, steganalysis,

and coding. The paradigms proposed here for speech quality measurement are

general and can be used for image/video quality measurement. In fact, the

first steps have already been taken in [183]. Moreover, the hybrid signal-and-

link-parametric quality measurement paradigm can be explored for emerging IP

television and video streaming applications.
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Möller, N. Cote, V. Barriac, and A. Raake).

[183] T. H. Falk, Y. Guo, and W.-Y. Chan, “Improving robustness of image quality

measurement with degradation classification and machine learning,” in Proc.

Asilomar Conf. on Signals, Systems and Computers, Nov. 2007, pp. 503–507.


