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Modulation Spectral Features for Robust
Far-Field Speaker Identification

Tiago H. Falk, Student Member, IEEE, and Wai-Yip Chan

Abstract—In this paper, auditory inspired modulation spectral
features are used to improve automatic speaker identification
(ASI) performance in the presence of room reverberation. The
modulation spectral signal representation is obtained by first
filtering the speech signal with a 23-channel gammatone filter-
bank. An eight-channel modulation filterbank is then applied to
the temporal envelope of each gammatone filter output. Features
are extracted from modulation frequency bands ranging from
3–15 Hz and are shown to be robust to mismatch between training
and testing conditions and to increasing reverberation levels.
To demonstrate the gains obtained with the proposed features,
experiments are performed with clean speech, artificially gener-
ated reverberant speech, and reverberant speech recorded in a
meeting room. Simulation results show that a Gaussian mixture
model based ASI system, trained on the proposed features, con-
sistently outperforms a baseline system trained on mel-frequency
cepstral coefficients. For multimicrophone ASI applications, three
multichannel score combination and adaptive channel selection
techniques are investigated and shown to further improve ASI
performance.

Index Terms—Gaussian mixture model (GMM), modulation
spectrum, reverberation, reverberation time, speaker identifica-
tion.

I. INTRODUCTION

T ODAY, the majority of existing automatic speaker identi-
fication (ASI) systems use mel-frequency cepstral coeffi-

cients (MFCCs) as auditory inspired features and Gaussian mix-
ture models (GMMs) or support vector machines for classifica-
tion. With burgeoning hands-free communication technologies,
however, the performance of such systems is shown to degrade
substantially, mostly due to room acoustical effects [1] and to
mismatch between training and testing conditions [2]. In order
to improve far-field ASI performance, two paradigms have been
explored. The first uses compensation schemes to suppress un-
wanted environment effects (e.g., reverberation) from the test
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speech signal in order to better match the characteristics of clean
speech used to train the speaker models. The second approach,
viewed as a dual of the compensation methodology, artificially
distorts training speech data in order to better match the ex-
pected characteristics of the distorted test speech signals.

Compensation techniques can operate either at the feature or
signal level, or at both the signal and feature levels. Methods
that operate at the feature level attempt to reduce environment
effects by modifying the extracted features. The most common
techniques include cepstral mean substraction (CMS), cepstral
mean substraction and variance normalization (CMSVN), and
relative spectral (RASTA) filtering [3]. In turn, compensation
at the signal level involves performing speech enhancement
prior to feature extraction [4], [5]. With far-field ASI, room
reverberation acts a major performance degrading factor and
speech enhancement consists of reverberation suppression.
Dereverberation, however, is a difficult and often ill-condi-
tioned problem, particularly if only a single microphone is
available. Moreover, dereverberation may introduce artifacts
which can be detrimental to ASI performance. To alleviate the
effects of introduced artifacts, combined feature-signal pro-
cessing has been used. In [6], a microphone array beamformer
is used for reverberation suppression and CMS is used to reduce
introduced artifacts. Similarly, the work described in [7] uses
reverberation suppression in combination with feature warping
and CMS for improved far-field ASI performance.

Alternately, the works described in [8]–[11] propose to artifi-
cially distort training speech in order to emulate distortions that
are expected to be present during testing. Commonly, multiple
models are trained per speaker, each obtained with training data
distorted by different room acoustical properties. In [8], speaker
models are obtained for five different room impulse responses.
During testing, a room impulse response classifier is used to de-
termine which speaker model to use. Similarly, in [9] six models
are used per speaker to represent unreverberant and five levels
of reverberant speech (ranging from low to high). For testing, a
“reverberation sensing system” is used to decide which speaker
model to use. In [10], [11], it is assumed that some a priori in-
formation is known about the room in which test signals will be
recorded; representative parameters include approximate room
size and speaker/microphone positions. Access to such infor-
mation allows training speech to be distorted with an artificially
generated room impulse response which approximates that of
the real test environment.

In this paper, an alternate approach to environment-robust
speaker identification is presented. In particular, motivated
by [12], auditory inspired modulation spectral features are
proposed based on extending the work described in [13].
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The features are shown to be robust to mismatch between
training and testing reverberation conditions and insensitive to
increasing reverberation levels. Mismatch conditions due to
e.g., additive noise or transmission channels are not explored
in this paper and are left for future study. The effectiveness of
the proposed features is demonstrated with three ASI experi-
ments which use reverberant speech generated with simulated
or measured room impulse responses and reverberant speech
recorded in a meeting room. Comparisons are carried out with
an MFCC-GMM baseline system operating with different
compensation methods (e.g., CMSVN, speech enhancement,
and a combination of both). Experimental results show that a
GMM ASI system based on the proposed features consistently
outperforms the baseline. Moreover, three channel selec-
tion/combination techniques are explored for multimicrophone
applications; experiments show that further improvement in
far-field ASI performance can be attained.

The remainder of this paper is organized as follows.
Section II describes models of room reverberation as well as
introduces methods to artificially generate reverberant speech.
Section III presents the proposed modulation spectral fea-
tures and Section IV the proposed and baseline ASI systems.
Section V reports experimental results and Section VI describes
three channel selection and combination techniques. Lastly,
conclusions are presented in Section VII.

II. ROOM REVERBERATION

In this section, models of room reverberation and methods to
generate reverberant speech are discussed.

A. Models of Room Reverberation

Speech propagation from a speaker to the microphone in a
reverberant room is conventionally modeled as a linear filtering
process. The reverberant signal is modeled as a convolution
of the source (clean) speech signal with the room impulse
response

(1)

It is known that under the diffuse sound field assumption, the
ensemble average of the squared room impulse response decays
exponentially with time [14]

(2)

The angled brackets denote the ensemble average, is a gain
term, and is the damping factor given by

(3)

where is the sampling frequency and is the so-called
reverberation time, the parameter most widely used to char-
acterize room acoustics. By definition, reverberation time is
the time required for the sound energy to decay by 60 dB
after the sound source has been turned off [15]. Commonly,
the Schroeder integral is used to calculate from the room
impulse response [16].

Fig. 1. Waveforms, top to bottom: clean and reverberant speech with � �

0.2� 0.5� and 1 s.

B. Simulated Reverberant Speech

In our experiments, two tools are used to artificially generate
reverberant speech: SIREAC (SImulation of REal ACoustics)
[17] and the ITU-T software package described in Recom-
mendation G.191 [18]. The SIREAC tool convolves the source
speech signal with artificially generated (office) room im-
pulse responses. The user has the freedom to vary , thus
simulating office environments of different sizes and dimen-
sions. The waveforms depicted in Fig. 1 exemplify reverberant
speech signals produced by the SIREAC simulation tool for

and 1 s. In our experiments, reverberant speech
signal levels are normalized to -26 dBov (dB overload) using
the ITU-T P.56 voltmeter [19]. In turn, the ITU-T G.191 tool
is used to convolve room impulse responses measured from an
office environment with clean speech signals. The measured
room impulse responses used in our experiments are described
in [20] and were collected with a six-channel microphone
array and corresponded to s. Microphones were
omnidirectional and spaced 5 cm apart in a linear array. The
speaker was placed at a 90 angle with respect to the center of
the array at a distance of 94 cm.

III. AUDITORY INSPIRED MODULATION SPECTRAL FEATURES

In this section, a brief description of the proposed modulation
spectral features are described (reader is referred to [21] for a
more detailed description) and the motivation for their use in
far-field speaker identification is presented.

A. Feature Extraction

The proposed modulation spectral features are computed
using the signal processing steps depicted in Fig. 2. First, the
speech signal is filtered by a bank of 23 critical-band
gammatone filters to emulate the processing performed by
the cochlea [22]. Filter center frequencies range from 125
Hz to nearly half the sampling rate (e.g., 3567 Hz for 8-kHz
sampling rate). Filter bandwidths are characterized by the
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Fig. 2. Block diagram of the signal processing steps involved in the computa-
tion of the modulation spectral features.

Fig. 3. Filter responses for the 23-channel gammatone filterbank.

equivalent rectangular bandwidth (ERB) [23]. The ERB for
filter , , is given by

(4)

where represents the center frequency for the filter and
and are constants set to 9.265 and 24.7, respectively. Fig. 3
illustrates the frequency response of the 23-channel gammatone
filterbank used in our experiments.

The output signal of the th gammatone filter is given by

(5)

TABLE I
MODULATION FILTER CENTER FREQUENCIES �� � AND

BANDWIDTHS ��� � EXPRESSED IN Hz

where is the impulse response of the filter. The tem-
poral envelope of is computed using the Hilbert transform

. Temporal envelopes are computed as the magni-
tude of the complex analytic signal .
Hence,

(6)

Temporal envelopes are then multiplied by a 256 ms Ham-
ming window with 32-ms shifts; the windowed envelope for
frame is represented as , where the time variable is
dropped for convenience. Frames of 256-ms duration are used in
order to obtain appropriate resolution for low-frequency modu-
lation frequencies.

The modulation spectrum for critical band is obtained by
taking the discrete Fourier transform of the temporal en-
velope

(7)

where denotes modulation frequency. Modulation frequency
bins are grouped into eight bands in order to emulate an au-
ditory-inspired modulation filterbank [24]. The center frequen-
cies and bandwidths of the eight modulation filters used in our
experiments are described in Table I; the motivation to discard
frequencies below 3 Hz is discussed in Section III-B. Hence-
forth, the notation and will be used to denote the
per-frame and average (over all frames) modulation energy of
the th critical-band signal grouped by the th modulation filter.
Additionally, the notation and will be used to de-
note the per-frame and average 23-dimensional energy vector
for modulation channel , respectively.

B. Feature Selection for Environment-Robust ASI

Previous research has shown that temporal envelopes of clean
unreverberated speech contain dominant frequencies (termed
modulation frequencies) ranging from 2–16 Hz [25], [26] with
spectral peaks at approximately 4 Hz, corresponding to the syl-
labic rate of spoken speech [27]. With reverberant speech, the
room impulse response reverberation tail is often modeled as
an exponentially damped Gaussian white noise process [28]. As
such, it is expected that reverberant signals attain more Gaussian
white-noise like properties with increasing . Since temporal
envelopes computed using (6) can contain frequencies up to the
bandwidth of its originating signal [29], reverberant signals are
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Fig. 4. Plots of ��� versus acoustic frequency for modulation frequency band � � �� � � � � � (subplots (a)–(h) respectively), for clean speech (solid) and reverberant
speech with � � ��� s (dash-dotted) and � � � s (dashed).

expected to contain significant modulation frequency compo-
nents beyond the 2–16 Hz range of clean speech.

The plots in Fig. 4(a)–4(h) assist in illustrating the effects of
on , for , respectively. In the plots, modu-

lation energy values are normalized by the maximum modula-
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tion energy obtained for modulation band , corresponding
to the syllabic rate of spoken speech. As can be seen from the
figure, is shown to be robust to increasing for modu-
lation bands , which correspond to modulation fre-
quencies ranging from 3–15 Hz. Moreover, as expected, sub-
plots (d)–(h) show that the modulation energy at higher modu-
lation frequency bands increases with increasing

; such bands correspond to modulation frequencies greater
than 16 Hz. Hence, in order to devise an environment-robust
ASI system, we propose to use , as features.
As will be shown in Section VI, information from higher mod-
ulation frequency bands can be used to assist in
multichannel score combination.

Moreover, as seen from Table I, modulation frequencies
below 3 Hz are not considered. The motivation for discarding
such frequencies is twofold. First, reverberation causes tem-
poral smearing since gaps between speech bursts are filled
with reverberant energy from adjacent phonemes [26]. Our
pilot experiments have shown that temporal smearing causes
an increase in modulation energy at low modulation frequen-
cies ranging from DC to approximately 3.2 Hz. Second, with
far-field applications, speech is often recorded in noisy environ-
ments where (quasi-)stationary noise sources are present (see
Section V-D). Our experiments have shown that common office
and meeting room noise sources (e.g., fan or air conditioner
noise) have dominant modulation frequencies below 3 Hz.
Hence, by discarding modulation frequencies below 3 Hz,
increased robustness can be attained for far-field ASI. The
proposed GMM-based ASI system is described in more detail
in Section IV-B.

IV. ASI SYSTEM DESCRIPTION

In this section, the baseline and proposed systems are de-
scribed.

A. Baseline System

The widely used GMM based speaker identification system is
used as the baseline [30]. A GMM consists of a weighted sum
of component densities

(8)

where are the mixture weights, with
and , and are Gaussian densities with

mean vector and covariance matrix . The parameter list,
, defines a particular GMM, where

are obtained from training data using the expec-
tation-maximization (EM) algorithm [31].

For the baseline, a conventional mel-frequency cepstral co-
efficient (MFCC)-based system, similar to the ones used in [7],
[32], is explored. Feature vectors consist of 12th-order MFCCs
appended with 12th-order delta MFCCs. In pilot experiments,
it was observed that the inclusion of double-delta coefficients
reduced identification accuracy for higher . MFCCs are
derived from a 26-channel mel-scale filterbank and the zeroth
order coefficient (log-energy) is kept to form a 25-dimensional
feature vector. Coefficients are computed from 25-ms frames

with 10-ms shifts and only informative active speech frames are
kept. GMMs with 32 and 64 diagonal components, per speaker,
are investigated. Clean speech is used to train the baseline
speaker models; different models are obtained for different
feature level compensation strategies (e.g., CMS or CMSVN).

ASI is based on the average log-likelihood measure
computed for active speech frames

(9)

where denotes the 25-dimensional MFCC feature vector and
the GMM parameters obtained for speaker . Given a group

of speakers, the identified speaker is obtained using the
following log-likelihood test

(10)

B. Proposed System

For the proposed ASI system, one GMM is trained per
speaker for each of the first three modulation frequency bands

. In our experiments, each model comprises 32
diagonal Gaussian components. Unless stated otherwise, clean
speech is used for training of the system and compensation
is not employed in order to demonstrate the robustness of the
proposed system to mismatch between training and testing
conditions. Identification is performed based on the average
log-likelihood value computed for modulation frequency band

over active speech frames

(11)

where represents the GMM for band and the per-band
GMM parameters for speaker . For the proposed system, the
following log-likelihood test is used

(12)

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed and base-
line systems is reported for experiments involving reverberant
speech generated with simulated and measured room impulse
responses as well as recorded reverberant speech.

A. Performance Figures

In the subsections to follow, (percentage) identification ac-
curacy (ACC) is used to quantify system performance. More-
over, two measures are used to quantify the improvement in per-
formance attained with the proposed system over the baseline;
namely, percentage increase (INC) and percentage error rate re-
duction (ERR). The measures are given by

(13)

(14)
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Fig. 5. Identification accuracy versus � for the proposed method (solid) with
� � ��, and the baseline with CMSVN compensation for � � �� (dash-
dotted) and � � �� (dashed).

where and denote the identification accuracy obtained with
the baseline and the proposed system, respectively.

B. Experiment 1: Simulated Room Impulse Responses

For the first experiment, the SIREAC tool is used to create
reverberant speech with values ranging from 0.2–0.5 s (in
0.1-s increments) and 1 s. The values are chosen as to simulate
small, medium, and large office/meeting rooms. In this experi-
ment, reverberant speech is generated by corrupting a subset of
the TIMIT database; note that the TIMIT database does not in-
clude session variability. TIMIT speech files are downsampled
to 8 kHz and utterances from 340 of the 630 speakers are used.
Of the ten available utterances per speaker, eight are used to train
the speaker models and two are kept for testing. Such separation
results in 680 test speech signals for each of the five aforemen-
tioned conditions, in addition to 680 clean speech signals

s . For the baseline CMS, CMSVN, and RASTA fil-
tering are tested as feature level compensation methods.

Plots in Fig. 5 depict identification accuracy versus
for the proposed system (without compensation) and for the
baseline system with CMSVN compensation, as it resulted in
superior performance; speaker models for both systems were
trained using clean speech. As observed, baseline performance
degrades almost linearly for s. The performance of
the proposed system, on the other hand, is shown to be fairly in-
sensitive to increasing . Moreover, baseline performance is
shown to be slightly superior to that of the proposed system for
lower values s for speaker models with .
One disadvantage of the proposed system is that longer win-
dows and window shifts are needed relative to the baseline; this
amounts to roughly three times less feature vectors available for
training. As a consequence, the use of more complex speaker
models (larger ) is not feasible with short duration training
data, as is the case with the TIMIT database. Strategies, such
as maximum a posteriori (MAP) adaptation for GMM training,
offer room for improvement and are left for a future study.

Table II reports identification accuracy and performance im-
provements attained with the proposed system over the baseline.

TABLE II
PERFORMANCE COMPARISON OF PROPOSED SYSTEM �� � ��� AND THE

BASELINE WITH CMSVN COMPENSATION. AVERAGE IMPROVEMENT IS

COMPUTED OVER THE FIVE REVERBERATION CONDITIONS

As can be seen, the proposed system is shown to attain com-
parable results with the baseline for clean speech
(represented by s in the table and in Fig. 5); some-
what lower performance is attained relative to the more com-
plex baseline . Nonetheless, despite the use of less
complex speaker models and the absence of feature level com-
pensation, the proposed system is shown to improve over the
baseline by an average 17.6% INC and 15.8% ERR
for and by as much as 85.7% INC for s.

Moreover, a slight improvement in identification accuracy is
observed with the proposed system for s relative to
0.3 s s; in contrast, baseline system performance
degrades monotonically for s. Although counter
intuitive at first, this improved performance at higher values
can be explained by insights presented in [33]. As mentioned
in Section III-B, reverberation causes low amplitude speech
segments and silence intervals to be filled with energy smeared
from preceding phonemes [25]. As increases, temporal
smearing causes the modulation energy at lower modulation
frequencies Hz to be amplified [34]. Additionally, as

increases, due to the Gaussian white-noise like properties
of the reverberation tail, modulation energy at increasingly
higher modulation frequencies Hz are also amplified
(see Fig. 4). Hence, for large , features extracted from
modulation frequencies between 3–15 Hz are less affected
by room reverberation and result in somewhat improved ASI
performance. It is emphasized that this behavior has been
observed for values up to 2 s [33]. Such highly reverberant
scenarios, however, are not included in our experiments due to
limitations of the SIREAC tool.

C. Experiment 2: Measured Room Impulse Responses

For the second experiment, the ITU-T G.191 tool is used
to convolve the six-channel measured room impulse responses

s described in Section II-B with clean speech.
For this experiment the CHAINS (CHAracterizing INdividual
Speakers) clean speech corpus is used [35]. The corpus contains
speech files from 36 speakers, recorded in two sessions (two
months apart) using different microphones [36]. Each speaker
reads four short fables and utters 33 short sentences; the latter
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TABLE III
PERFORMANCE COMPARISON OF PROPOSED SYSTEM �� � ��� AND THE

BASELINE WITH CMSVN COMPENSATION. AVERAGE PERFORMANCE AND

IMPROVEMENTS ARE COMPUTED OVER THE SIX-CHANNEL RESULTS

are sentences mostly taken from the TIMIT database to provide
a balanced phonetic coverage. The corpus is downsampled to
8 kHz and seven speech files (four fables plus three uttered sen-
tences) are kept for training and the remaining 30 are left for
testing. This amounts to a total of 1080 six-channel reverberant
and 1080 single-channel clean test speech files.

For the baseline we experiment with three signal level speech
enhancement schemes in combination with CMSVN. The se-
lected multichannel dereverberation algorithms are the ones that
showed superior performance in the automatic speech recogni-
tion test described in [20]. The dereverberation algorithms in-
clude a delay-and-sum beamformer (DSB), the multichannel
cepstrum based algorithm described in [37], and a frequency
domain subspace-based algorithm [38]; more detail regarding
the speech enhancement algorithms can be found in [20].

Table III shows performance figures attained with the sys-
tems for the multichannel reverberant speech signals. In the
table, baseline results are reported with CMSVN compensation
as it resulted in superior performance. As can be seen, both sys-
tems perform comparably for clean speech with the more com-
plex baseline attaining slightly improved perfor-
mance. For reverberant speech, the proposed system is shown
to improve over the baseline by an average 48.9%
INC and 61.1% ERR and the more complex baseline by an av-
erage 39.4% INC and 57.4% ERR. Additionally, Table IV shows
the performance attained with the baseline once dereverberation
(combined with CMSVN) is performed. While delay-and-sum
beamforming and subspace-based dereverberation methods are
shown to improve baseline performance, cepstrum-based dere-
verberation decreases identification accuracy. In the table, im-
provement measures are computed using the average perfor-
mance of the proposed system reported in Table III

.
Experiments with the reverberation-suppressed speech sig-

nals and the proposed ASI system are also carried out in order
to investigate the effects of dereverberation on modulation spec-
tral features. It is observed that dereverberation does not signifi-
cantly affect system performance. As an example, the proposed

TABLE IV
BASELINE PERFORMANCE AFTER DEREVERBERATION AND CMSVN.

PERFORMANCE IMPROVEMENTS ARE COMPUTED USING THE AVERAGE

PROPOSED-SYSTEM PERFORMANCE REPORTED IN TABLE III.

Fig. 6. PZM microphone setup at the ICSI meeting room.

system attains 82.8% ACC with reverberant signals processed
by the delay-and-sum beamformer. These findings corroborate
those reported in [39], where it is shown that multichannel dere-
verberation algorithms mostly suppress modulation energy con-
tent at modulation frequencies greater than 20 Hz, thus causing
only subtle changes to the proposed features. Overall, the pro-
posed system, without compensation, improves over the base-
line with delay-and-sum beamforming and CMSVN
compensation by 31.3% INC and 53.2% ERR; for the
improvements are 22.7% INC and 46.9% ERR.

D. Experiment 3: Reverberant Speech Recordings

The third experiment makes use of the publicly available
subset of the International Computer Science Institute (ICSI)
Meeting Corpus [40] (the full dataset is licensed by the LDC,
Linguist Data Consortium). The corpus contains multichannel
noisy and reverberant speech s recordings of digit
strings read by meeting participants at the beginning and the
end of 22 meetings at ICSI. Four omnidirectional pressure zone
microphones (PZM) are used and arranged in a staggered line
along the center of the conference table, as depicted in Fig. 6.
Meetings involved anywhere from three to ten participants
(averaging six) with levels of English language fluency ranging
from fluent to “hard-to-transcribe.” Noise sources include
low-level hum of meeting room lights and fans (particularly
for microphones numbered 6 and 7), as well as noise from
nearby elevators, hallway conversations, and laughter from
other meeting participants. Speech files range from 17–35 s
and approximately 80% of the available speech data for each
speaker was used for training and the remaining 20% was left
for testing. Care was exercised to assure that training and test
data came from separate meetings.

In this experiment we investigate the effects of training and
testing condition mismatch by designing speaker models with
data recorded from one of the four microphones and testing with
data recorded from the remaining three microphones. During
some of the meetings, the microphones also captured intrusive
speech-like noises and speech from competing speakers. These
noise sources were found to significantly degrade ASI per-
formance of both the baseline and proposed systems, causing
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TABLE V
MATCHED AND MISMATCHED ACCURACY AND PERFORMANCE IMPROVEMENTS

ATTAINED WITH THE PROPOSED SYSTEM �� � ��� OVER THE BASELINE

�� � ��� FOR THE ICSI MEETING CORPUS

and INC, respectively. As a countermeasure, the
noise suppression module of the enhanced variable rate codec
[41] is used to reduce nonstationary speech-like noises. Unlike
previous experiments, enhanced speech signals are used to test
both the proposed and the baseline systems. For the baseline
system, however, an additional feature level compensation
method (CMSVN) is used to further improve performance.

Table V reports identification accuracy for matched and mis-
matched train-test conditions. Matched conditions indicate that
speaker models were trained and tested from signals captured by
the same microphone. Mismatched performance is the average
over the three remaining train-test combinations. The results re-
ported in the table are for a baseline system with and
the proposed system with . As can be seen, average
improvements of 16.8% INC and 68.9% ERR can be attained
by using the proposed system in matched conditions. For mis-
matched conditions, in turn, improvements of 13.3% INC and
42.9% ERR are obtained.

VI. MULTIMICROPHONE CHANNEL SELECTION

AND SCORE COMBINATION

Far-field speech applications commonly involve the use of
multiple microphones and multichannel speech enhancement
techniques to improve ASI performance. Notwithstanding, as
shown in Section V-C, enhancement techniques may introduce
artifacts that can further degrade ASI performance. It is known
that the room impulse responses measured at each microphone
change continuously due to, e.g., moving speakers, room tem-
perature, and furniture placement. As a consequence, different
microphones capture signals of varied quality or reliability. In
[7], multichannel score combination is shown to also improve
ASI performance in far-field applications. In this section, con-
ventional channel selection and multichannel score combination
techniques are explored in Sections VI-A–VI-B, respectively, as
alternative methods to improve ASI performance. A novel ob-
jective quality based score combination technique is also pro-
posed in Section VI-C.

A. Maximum Log-Likelihood Based Channel Selection

The goal in adaptive channel selection is to select the micro-
phone which is deemed to capture the most “reliable” speech
signal. In this section, the most reliable signal is assumed to be

the one that results in the maximum log-likelihood value. For
the baseline, let the average log-likelihood value, computed per
microphone, be denoted by

(15)

where denotes the 25-dimensional MFCC feature vector
computed from the speech signal captured by microphone and

denotes the total number of microphones in the array. Hence,
using the maximum log-likelihood criterion for selection, ASI
is performed using the following rule:

(16)

where

(17)

Similarly, for the proposed system let the per-microphone av-
erage log-likelihood value be denoted as

(18)

where indexes the modulation frequency band ,
indexes the microphone , and repre-

sents the proposed modulation spectral features computed for
the speech signal captured by microphone . Speaker identifica-
tion is performed based on the following rule:

(19)

where

(20)

B. Mean-Score Multichannel Combination

With multichannel score combination, log-likelihood values
(i.e., “scores”) computed from speech signals captured by mul-
tiple microphones are judiciously combined and used for ASI.
As opposed to adaptive channel selection, where information
from only one microphone is used, multichannel score combi-
nation uses information from all available microphones. With
mean-score multichannel combination, baseline identification is
performed using (16) where

(21)

Similarly, for the proposed system identification is performed
using (19) where

(22)
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TABLE VI
PERFORMANCE COMPARISON OF ADAPTIVE CHANNEL SELECTION AND MULTICHANNEL SCORE COMBINATION TECHNIQUES. COLUMNS

LABELED “MAX,” “MEAN,” AND “WEIGHTED” CORRESPOND TO MAXIMUM LOG-LIKELIHOOD BASED CHANNEL SELECTION, MEAN-,
AND WEIGHTED-SCORE-BASED CHANNEL COMBINATION, RESPECTIVELY

TABLE VII
PERFORMANCE COMPARISON OF WEIGHTED-SCORE MULTICHANNEL COMBINATION WITH AVERAGE SINGLE-CHANNEL PERFORMANCE AND WITH

MULTICHANNEL SIGNAL-BASED DEREVERBERATION. COMPARISONS ARE FOR BOTH THE PROPOSED SYSTEM AND FOR THE BASELINE WITH� � ��

C. Weighted-Score Multichannel Combination

With weighted-score multichannel combination, baseline
identification is performed using (16) with

(23)

where is the assigned weight for microphone and
. Similarly, for the proposed system identification

is performed using (19) with

(24)

The goal with weighted-score channel combination is to assign
larger weights to microphones that capture signals of higher
quality. Here, the speech-to-reverberation modulation energy
ratio (SRMR), shown in [39] to be highly (positively) corre-
lated with the perceived quality of reverberant speech, is used
to compute the weights. The SRMR measure, computed per-mi-
crophone, is given by

(25)

and the weight for microphone is calculated as

(26)

D. Experiment Results

To test the adaptive channel selection and multichannel score
combination strategies, the six-channel database
described in Section V-C is used. For the baseline, CMSVN

is applied as it resulted in improved performance over not
applying channel compensation. Table VI reports performance
figures attained with the maximum log-likelihood based channel
selection method (column labeled “Max”) and the mean- and
weighted-score channel combination strategies (columns la-
beled “Mean” and “Weight,” respectively). As observed, for
this experiment the conventional mean-score combination
technique attained comparable performance with the proposed
weighted-score combination method. Careful analysis of the
computed weights suggest that the signals captured by the six
microphones were of similar quality, an expected result as the
microphones were only separated 5 cm apart. Nonetheless, the
proposed system with weighted-score channel combination can
improve on baseline performance by as much as 36.7% INC
and 64.6% ERR for and by 26.4% INC and 58.7%
ERR for .

Table VII, in turn, shows performance comparisons be-
tween the proposed weighted-score multichannel combination
strategy and the average single-channel performance, as
reported in Table III, for both the proposed and baseline
systems. For the baseline, additional comparisons are shown
between the proposed score combination technique and the
three signal-based dereverberation algorithms, as reported in
Table IV. As can be seen, the proposed score combination
technique outperforms average single-channel identification
by 5.4% INC and by 26.0% ERR for the proposed system and
by 16.4% INC and 23.8% ERR for the baseline. Additionally,
score combination is shown to improve baseline performance
over all three dereverberation strategies. Improvements of 2.4%
INC and 4.9% ERR are observed relative to DSB; relative to
cepstrum-based dereverberation, improvements of 33.7% INC
and 36.0% ERR are attained.

VII. CONCLUSION

Modulation spectral features are proposed for environ-
ment-robust automatic speaker identification. Several experi-
ments conducted with both artificially generated and recorded
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reverberant speech serve to demonstrate the effectiveness
of the proposed features for far-field speaker identification.
Additionally, a novel objective speech quality based score
combination technique is proposed. In this paper, the proposed
score combination method is shown to only slightly outperform
a conventional mean-score combination technique when the mi-
crophones are placed in proximity to each other, such that each
microphone captures signals of similar quality. It is conjectured
that further gains can be attained with the proposed method
if microphones are separated further apart; this investigation,
however, is left for a future study.
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