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Abstract
Near-infrared spectroscopy (NIRS) has recently been investigated as a non-invasive
brain–computer interface (BCI). In particular, previous research has shown that NIRS signals
recorded from the motor cortex during left- and right-hand imagery can be distinguished,
providing a basis for a two-choice NIRS-BCI. In this study, we investigated the feasibility of
an alternative two-choice NIRS-BCI paradigm based on the classification of prefrontal activity
due to two cognitive tasks, specifically mental arithmetic and music imagery. Deploying a
dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites
around the frontopolar locations (International 10–20 System) while ten able-bodied adults
performed mental arithmetic and music imagery within a synchronous shape-matching
paradigm. With the 18 filtered AC signals, we created task- and subject-specific maximum
likelihood classifiers using hidden Markov models. Mental arithmetic and music imagery were
classified with an average accuracy of 77.2% ± 7.0 across participants, with all participants
significantly exceeding chance accuracies. The results suggest the potential of a two-choice
NIRS-BCI based on cognitive rather than motor tasks.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Despite major advances in assistive technologies, a significant
number of individuals with severe and multiple motor
disabilities still have no means of expressing something as
basic as functional intent. This has become a prevalent issue in
rehabilitation engineering, and major efforts have been made in
the development of novel ‘access technologies’ [1] which may
provide such individuals with unconventional channels for
communication and environmental control. Brain–computer
interfaces (BCIs), for example, are controlled through brain
activity alone and have emerged as promising access solutions

for individuals who lack sufficient motor control to operate
more conventional movement-based devices. Such individuals
may include those with late-stage amyotrophic lateral sclerosis
(ALS), brainstem stroke, or severe cerebral palsy [2].

In this paper, our focus is on the potential development
of a safe, reliable, noninvasive BCI based on near-infrared
spectroscopy (NIRS), an optical imaging technology that
can be used to assess functional activity in the brain via
the hemodynamic response. An NIRS-based BCI would
allow an individual with severe motor disability to access an
assistive device, such as a communication aid or environmental
control unit, by consciously controlling functional activity in a
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pre-defined region of the brain. When the user desires to
activate the device, he or she would simply perform some
simple mental task known to elicit a specific spatial and
temporal activation pattern in the region under interrogation.
This activity would be measured (by NIRS), classified, and the
resultant signals used as input to control the assistive device.

Though NIRS has been used extensively in various other
applications to assess functional brain activity [3–18], its
potential as a basis for BCI technologies has only recently been
explored. Initial studies involving able-bodied participants
focused on the use of motor imagery as the paradigm of
BCI control [19–21]. Because motor cortical activation due
to motor tasks had been investigated with positive results
in other NIRS studies [3–11] and because motor imagery
had been shown to work well in previous BCIs based on
electroencephalography (EEG) [22, 23], this form of brain
activation was appealing for NIRS-BCI development.

In a five-subject study, Sitaram et al demonstrated the
possibility of classifying NIRS signals arising from right- and
left-hand motor imagery with accuracy around 89.1% [24].
The ability to classify these two activities opens the door for
the development of an NIRS-BCI two-choice cursor control
paradigm. The work described in [24] proposed a word speller
interface in which the user employs left- or right-hand imagery
to move the cursor to the left or right, respectively, to select
the letter of choice.

However, for individuals with congenital motor
impairments, or for whom a significant length of time has
lapsed since the loss of motor function, eliciting functional
activity via motor imagery in a manner adequate for BCI
operation may be difficult, if not impossible. Indeed, imaging
studies have identified significant brain motor function
defects in individuals with complete and chronic spinal cord
injury, including strongly reduced volume of activation, poor
modulation of function and abnormal activation patterns due to
motor imagery [25], while other studies have shown significant
impairment in mental representation and manipulation of
body parts in individuals with locked-in syndrome (LIS)
[26]. Recent NIRS-BCI studies have addressed this issue
by also considering higher cognitive tasks associated with the
prefrontal cortex (PFC), an area of the brain less likely to
be implicated in motor disability. Such studies have shown
the feasibility of using NIRS to detect functional activity due
to mental singing [27], various verbal tasks [28, 29], mental
arithmetic [27, 29, 30] and other working memory tasks [31]
for the purpose of BCI development. Measuring functional
activity via the PFC rather than the motor cortex is also
advantageous in that signal attenuation and motion artefacts
due to hair, which have been reported to be the primary factor
in system performance degradation [20], are mitigated.

The aim of the present study was to investigate the
feasibility of differentiating between two different cognitive
tasks in the PFC using NIRS measurements. If two
such activities can be successfully classified with acceptable
accuracy, it could provide an alternative to the motor imagery-
based two-choice BCI paradigm for those populations
mentioned above. The cognitive tasks between which we
attempted to discriminate were mental arithmetic and music
imagery.

Though the primary processing of arithmetic/numeric
operations seems to occur in the parietal cortex [32–34], the
lateral PFC has also been implicated [33–36]. The precise
conditions that induce prefrontal activation during mental
arithmetic are not well understood [37], but could be associated
with working memory [33, 36], mental stress [18, 38], or
other general cognitive operations that are instrumental, but
not specific, to mental arithmetic [32, 33]. With respect to
the music imagery task, we exploit the emotional component
of music. Music is known to elicit [39, 40] and enhance
[41] intense emotional responses that activate brain regions
believed to be associated with emotional behaviors, including
the PFC [42] and specifically, the orbitofrontal and frontopolar
areas [43, 44]. The prefrontal hemodynamic response
to subject-selected imagined singing has been previously
observed in healthy participants via functional magnetic
resonance imaging (fMRI) [45]. The prefrontal response
to covert singing has also been observed in an individual
with ALS, in the totally locked-in state (TLS), using optical
topography [46]. Because hidden Markov models (HMMs)
proved to be effective for the left- and right-hand classification
problem [24], we explore their application to cognitive task
classification.

2. Materials and methods

2.1. Participants

Ten able-bodied adults (four male, mean age = 26.2 ± 6.9)
were recruited from the staff/students at Bloorview Kids Rehab
(Toronto) to participate in this study. Potential subjects were
self-selected according to the following inclusion/exclusion
criteria.

• Subjects must not have any metabolic, cardiovascular,
respiratory, psychiatric, or drug- or alcohol-related
condition that could affect either the measurements or
their ability to follow the experimental protocol.

• Subjects must have normal, or corrected-to-normal,
vision.

• Subjects must enjoy music and feel that performing
imagery of self-selected musical pieces could elicit a
positive emotional response.

Subjects were asked to refrain from consuming coffee
or alcohol, or smoking cigarettes, for several hours prior to
the experimental sessions. Ethical approval was obtained
from Bloorview Kids Rehab, and participants provided signed
consent.

2.2. Instrumentation

A multichannel frequency-domain NIRS instrument (Imagent
Functional Brain Imaging System from ISS Inc., Champaign,
IL) was used for signal acquisition. Ten NIR sources and
three photomultiplier tube detectors were secured against the
forehead via a specially designed polyurethane headband. The
ten sources were grouped into five pairs, each containing one
690 nm and one 830 nm source, so that a given location could
be probed by both wavelengths simultaneously. With this
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Figure 1. Source–detector configuration. Each solid circle
represents a detector, while each open circle represents a source-pair
comprising one 690 nm and one 830 nm source fibre. The detectors
and source-pairs are spaced 3 cm apart. A ‘×’ denotes a point of
interrogation, while ‘∗’ denotes the approximate FP1 and FP2
positions of the International 10–20 System.

source–detector configuration, we interrogated nine discrete
locations within a trapezoidal area of 27 cm2, as shown
in figure 1. The source–detector pattern was centred on
the forehead such that the centre line of sources/detectors
was in line with the participant’s nose, and the bottom row
of sources/detectors was sitting just above the eyebrows.
Detectors A and B lie approximately over the FP1 and FP2
positions of the International 10–20 System. In terms of
optode placement, there is currently no standardized placement
scheme for NIRS measurements [20] although it is believed
that 3 cm is the ideal source–detector separation for measuring
cortical hemodynamics [47]. As this distance increases,
the optical signal weakens so that for separations exceeding
5 cm, the signal may be unusable [48]. In the given
configuration, we considered only those signals arising from
source–detector pairs (henceforth referred to as ‘channels’)
with a separation of 3 cm, for a total of 18 channels (i.e.
3 detectors × 3 source-pairs per detector × 2 wavelengths per
source-pair).

Light from the sources, modulated at 110 MHz, was
delivered to the forehead via 400 μm diameter optical fibres
and returned to the photomultiplier tube detectors by 3 mm
diameter optical fibres. The detector amplifiers were
modulated at 110.05 Hz, resulting in a cross-correlation
(or heterodyning) frequency of 5 kHz at which data were
recorded. The light sources were cyclically switched such
that no two sources were on simultaneously. For each data
collection cycle (i.e. one complete sequence through all ten
sources), each source remained on for eight periods of the
cross-correlation frequency (i.e. 1.6 ms), within which time
eight acquisitions were made. The fast Fourier transform
(FFT) was applied to the average of the eight waveforms to
obtain estimates of ac intensity, dc intensity and phase delay
for each channel. The resultant sampling frequency was
31.25 Hz (i.e. each source was sampled 31.25 times per
second).

2.3. Experimental protocol

NIRS signals were collected from each participant as they
performed two different cognitive tasks—music imagery and
mental arithmetic. During the music imagery task, subjects

Figure 2. Single trial timing diagram. The initial rest interval varied
between 15 and 25 s to reduce participant ability to anticipate the
start of the task interval.

were asked to select three songs which they felt would self-
elicit a strong emotional response. They were asked to
rate each song on five-point scales of valance (1 = very
unpleasant, 3 = neutral, 5 = very pleasant) and arousal
(1 = very calming, 3 = neutral, 5 = very exciting), the
objective being that the chosen songs would rate highly on
each scale. When performing music imagery, participants
were instructed to not just passively imagine the tune and/or
lyrics, but to make an effort to feel the emotion elicited
by the piece. It has been suggested that incorporating this
self-monitoring element in an emotional induction task can
result in an increase in the prefrontal hemodynamic response
as compared to more passive emotional tasks [49]. During
mental arithmetic, participants performed a sequence of simple
mathematical calculations. These calculations always began
with the subtraction of a small number (between 4 and 13)
from a three digit number (both given, and different for
each trial), and continued throughout the task interval with
successive subtractions of the small number from the result of
the previous subtraction (e.g. 967−13 = 954, 954−13 = 941,
941 − 13 = 928, etc).

Fifty-one trials of each task, namely mental arithmetic
and music imagery, were recorded per participant, over three
experimental sessions (17 trials of each task per session). In
addition, 51 baseline trials (17 per session) were recorded in
which the participant performed no cognitive task but remained
in a resting state throughout the entire trial. These trials were
collected for use in a future study and were not considered
in the present discussion. For each session, all trials of a
given task were performed first (task 1), followed by all the
trials of the remaining task (task 2), with the baseline trials
dispersed randomly throughout the entire session (the random
order of baseline trials was different for the three sessions).
For even-numbered participants, task 1 corresponded to mental
arithmetic and task 2 to music imagery, while the reverse was
true for odd-numbered participants. The 51 trials of each
session were performed in five blocks (four blocks of 10 trials
and one block of 11 trials), between which participants were
given a short break.

During each experimental session, the participant sat on
a chair in a darkened, quiet room facing a computer screen on
which task cues were visually presented. Each trial consisted
of a 15–25 s rest interval, a 20 s task interval and a final 10 s rest
interval. Figure 2 depicts the timing diagram of a single trial.
During the resting state, subjects were instructed to relax, and
to mentally recite the alphabet very slowly and calmly. This
slight load was used to stabilize the prefrontal activity during
the resting intervals, as suggested in [27]. The first rest interval

3



J. Neural Eng. 7 (2010) 026002 S D Power et al

(a)

(b)

Figure 3. Sample trial display screens for (a) mental arithmetic and (b) music imagery. The participant was instructed to remain in a resting
state when the pictures were not matching (which occurred during the rest intervals), and to perform the indicated task when the pictures
matched (which occurred during the task interval).

was varied from 15 to 25 s to reduce the participant’s ability
to anticipate the start of the task interval.

To provide cues for the participant to transition between
the rest and task states, the experiment was designed as a
picture matching task. Two pictures of common geometric
shapes were presented on the screen, the smaller of which
remained constant throughout the trial while the other changed
at the beginning of each interval. Participants were told
to remain in a resting state whenever the pictures were not
matching (which occurred during the rest intervals), and to
perform the indicated task when the pictures matched (which
occurred during the task interval). During the task interval,
the task to be performed was indicated via a small box on the
screen—for music imagery trials this box displayed music
notes, while for mental arithmetic trials the equation the
subject was to perform was displayed. Figures 3(a) and (b)
depict representative display screens for each interval of a
mental arithmetic trial and a music imagery trial, respectively.

2.4. NIRS data pre-processing

When classifying activity, the light intensity signals can be
used directly, or can first be mathematically converted to
haemoglobin concentrations. Both methods have appeared
in the literature—both [27] and [50] classified light intensity
directly, while [24] and [20] performed the concentration
conversions prior to classification. Neither method has been
shown to be more discriminating than the other [50]. Because
it is less computationally intensive and therefore may be more
conducive to future adaptation to an online system, we chose
to classify the light intensity signals directly.

Prior to classification, the raw ac light intensity signals
were low-pass filtered to mitigate physiological noise due,
primarily, to respiration (0.2–0.3 Hz) [3], cardiac signals
(0.8–1.2 Hz) and the Mayer wave (approximately 0.1 Hz)

[51]. We employed a wavelet filter that performed a ten-level
decomposition using a Daubechies-12 wavelet. The filtered
signals were reconstructions retaining just the approximation
signal and the last four detail signals, given the knowledge that
hemodynamic activity is predominantly low-frequency (peak
response has been observed approximately 5–8 s post-stimulus
[11, 19, 21]). Wavelet filtering has been previously suggested
for functional NIRS signals [51].

For each of the 18 channels under consideration, the pre-
processed ac light intensity in the period 2–20 s after the
start of the task interval was extracted. Each 18 s segment
(which at a sampling frequency of 31.25 Hz was 562 data
points in length) was then normalized against its own mean
intensity and scaled. These time series segments (xk(t), where
k denotes the channel number) were concatenated to form
a per-trial 18 × 562 observation matrix, U, to be used for
HMM training/testing. Each column of U represents the 18-
dimensional feature vector, μt , for a given sampling point, t.
The vector μt comprises the ac light intensity measured at each
of the 18 channels. Note that due to a transient problem with
the instrumentation that corrupted the data from one of the
channels (but left the other channels unaffected), the feature
vectors for four of the subjects were 17-dimensional:

U =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1(t)

x2(t)
...

x18(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= {
μ1 μ2 · · · μ562

}
.

2.5. Pattern classification

In a Markov model, the states are directly observable, and
therefore the state transition probabilities are the only model
parameters. A hidden Markov model is a statistical model that
examines a Markov process in which the states are not directly
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observable (thus the adjective ‘hidden’), but depend on the
observable outputs. An observation probability distribution
is associated with each state, thus allowing information about
the state sequence to be inferred from the output sequence
(in the present discussion, the matrix U). Given a particular
model, there are two different problems that can be solved:
(1) determining the most likely state sequence from a given
observation sequence and (2) evaluating the probability of
a given observation sequence [52]. For this application, in
which the objective was to distinguish activation due to mental
arithmetic from that due to music imagery, we were interested
in the latter problem. In brief, we created a model for each of
the two tasks, and then classified trials as mental arithmetic or
music imagery based on which model was more likely to have
generated the trial data.

Hidden Markov models are useful for modelling
sequential data, such as those arising from time series
measurements. It is because of their ability to capture
temporal information that we chose to employ HMMs in
this classification problem. We anticipated that detailed
information about the unique spatio-temporal activation
patterns of each task would allow for the most reliable
classification. This is substantiated by the results reported
by Sitaram et al [24]. They found that HMMs performed
significantly better than support vector machines in the
classification of left- and right-hand motor imagery (as
measured by NIRS), and suggested that this was because ‘a
probability network like the HMM might model the dynamic
nature of the hemodynamic time series more effectively’ [24].

Here, we will discuss only those basic HMM principles
needed to understand the methods employed in this study. The
reader is referred to [52] for a detailed discussion of the theory,
implementation and practical application of HMMs.

An HMM, representing an observation vector μt , is
completely characterized by the following parameters.

(1) The number of discrete states, Q.
(2) A state transition probability matrix, A = {aij}, of

transition probabilities between states i and j .
(3) The initial state distribution vector, π.
(4) The vector of observation probability distributions in each

state j , denoted as b = {bj (μ)} where j = 1, . . . ,Q.
Commonly, Gaussian mixture models (GMM), given by
a weighted sum of M component Gaussian densities, are
employed as observation probability distributions.

In this study, unique HMMs were modelled and tested
for each participant. Due to the variability in hemodynamic
response patterns among individuals, the need for subject-
specific classifier training has been recognized in previous
NIRS-BCI studies [24, 50]. The complete data set for an
individual (51 trials each of mental arithmetic and music
imagery) was divided into training and test sets (using an
80/20 split per class). An HMM was modelled for each of the
two tasks using the complete set of observation vectors from
the training trials for that task, denoted as

{
Utask

train

}
(where task

denotes either math or music). During training, the parameters
A (state transition probabilities), b (output distribution
parameters) and π (initial state probabilities) were optimized

(a)

(b)

Figure 4. Training and classification procedure. (a) Model training:
an HMM was modelled for each of the two tasks using the complete
set of observation vectors from the training trials for that task,
denoted as {Utask

train} (where task denotes either math or music).
(b) Model testing and trial classification: for each test trial, i, the
log-likelihood (LL) of each model generating the trial observation
matrix, denoted by Utask

test,i , was determined using the forward–
backward algorithm described in [52]. The predicted class was the
one corresponding to the model that yielded the greater LL value.

for each HMM using the expectation-maximization algorithm
[52, 53]. The parameters π and A were initialized such that
all states and all transitions between states, respectively, were
equally probable. For the parameter b, the k-means clustering
algorithm [53] was used to obtain the initialization values for
the weights, means and covariances (full) of the M Gaussian
components in the GMM. The parameters Q and M need to
be determined a priori. In this study, different combinations
of these parameters were explored such that subject-specific
classifiers could be developed. All combinations of Q and M
that yielded a training ratio (ratio of number of training points
to number of estimated parameters) [54] greater than 10 were
tested. These parameter combinations were as follows: Q = 2,
M = {1, 2, 3, 4, 5, 6}; Q = 3, M = {1, 2, 3, 4}; Q = 4,
M = {1, 2, 3} and Q = 5, M = {1}.

During the classification phase, each trial from the test set
(including both mental arithmetic and music imagery trials)
was tested against each of the two HMMs (i.e. HMMmath for
mental arithmetic and HMMmusic for music imagery). For each
test trial, i, the log-likelihood of each model generating the test
data, denoted by the observation matrix Utask

test,i , was determined
using the forward–backward algorithm described in [52, 53].
The HMM yielding the highest log-likelihood value
represented the model from which the observed data most
likely arose, and thus the trial could be classified as belonging
to either the mental arithmetic or music imagery task. On the
rare occasion (less than 2% of cases) that log-likelihoods for
each of the two models were equal, the predicted class was
randomly assigned. Classification accuracy was evaluated for
each participant using fivefold cross-validation. Figures 4(a)
and (b) depict the model training and classification schemes,
respectively. The publicly accessible HMM toolbox for
Matlab [55] was used for the simulations.

3. Results

The results for the best-performing model parameters (Q and
M) for each participant are given in table 1. The table
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5

C 4

BA2

1

3

Figure 5. Light intensity versus time plots showing the hemodynamic response over the task interval (2–20 s post-stimulus) at each of the
nine interrogation locations (corresponding to the points indicated by a ‘×’ in figure 1), for music imagery (solid black) and mental
arithmetic (dashed red). For simplicity, only the signals from the 830 nm sources are shown, but note that the 690 nm signals exhibit similar
patterns. For each task, the signals shown are the average over all 51 trials for a single participant (participant 2).

Table 1. Per-participant classification accuracies and optimized
HMM parameters.

Model Classification
parameters accuracy (%)

Participant no Q M Mean SD p

1 2 4 71.7 6.6 0.0018
2 3 3 86.4 7.9 0.0005
3 4 1 80.2 6.1 0.0004
4 2 4 76.5 4.2 0.0001
5 4 1 82.1 9.2 0.0015
6 2 1 80.3 4.0 0.0001
7 3 2 80.4 7.9 0.001
8 4 3 77.0 5.7 0.0004
9 2 2 77.3 6.2 0.0006

10 2 5 60.5 7.3 0.0323

Average: 77.2 ± 7.0

reports these parameters as well as the average accuracy and
standard deviation over the fivefold cross-validation for each
participant. The average accuracy of the classifier over all
participants was 77.2%. T-tests showed that the classification
rates for all individuals were significantly higher than chance
(p < 0.0323). The individual p-values are reported in table 1.

4. Discussion

4.1. Differentiating between mental arithmetic and music
imagery

In this study, we attempted to classify activity in the PFC
resulting from two different cognitive tasks, specifically
mental arithmetic and music imagery. The encouraging
classification results obtained using pre-processed ac light
intensity signals and an HMM for each class warrant further
investigation of a two-choice NIRS-BCI paradigm based on
the classification of different prefrontal cognitive tasks.

Perhaps the reason we were able to differentiate between
mental arithmetic and music imagery is because the tasks
elicit slightly different spatial and temporal activation patterns
within the PFC, which were captured by the HMMs. This
hypothesis is substantiated by figure 5 which shows, for each
task, the hemodynamic response over the task interval at each

of the nine interrogation locations (the signals shown are the
average of the 51 trials for each task, for a single subject).
Note the differences in the response between the two tasks.

Two individuals—participants 1 and 10—had accuracies
that were substantially lower than the mean. It was noted
during fitting of the instrumentation at the experimental
sessions that the signal levels for participant 1 were atypically
low, even after attempts were made to improve coupling of the
sources and detectors to the forehead. Also, during the first
experimental session, this participant complained of severe
discomfort due to the headband, and the experimenter had to
remove and replace the apparatus three different times during
the course of the session. These complications may explain the
lower classification accuracy achieved for this participant. No
such circumstances were noted for participant 10, so the lower
accuracy in this case could potentially be related to the HMM
parameters. Though a number of different combinations of the
parameters Q and M were tested, it is possible that this set did
not include the optimal values for this particular participant. To
investigate additional values for Q and M for this participant,
while still maintaining an acceptable training ratio, more data
would be required.

4.2. Participant-specific HMMs

In this study, we chose to optimize not only the A, b and
π parameters on a per-participant basis, but to optimize Q
and M as well. The parameter Q represents the number
of states defined by the observations. It is likely that
throughout the course of the task interval, the participant
did not jump immediately from a resting state to an active
state, but rather that there was an initial period of increasing
activity. Furthermore, during this ‘ramping up’ stage, and
once a peak level of activity was reached, it is unlikely
that the participant was able to sustain a uniform pattern of
activity, but rather that there were irregularities in the level
and spatial distribution of the activity within the task interval.
These irregularities, along with possible extraneous activity
due to mind-wandering, could result in a wider variety of
different states. The intermediate activity between rest and
peak response will vary significantly between individuals, and
thus it is not surprising that the individually trained HMMs
for the different participants would be optimally defined by
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different numbers of states, Q. For similar reasons, we would
also expect inter-subject variability in the number of Gaussian
components, M, defining the observation distribution.

4.3. Comparing to past work

The accuracies achieved here are lower than those reported in
[24] for the classification of left- and right-hand motor imagery
by HMMs (although it is higher than the accuracy of 73.1%
they achieved using support vector machines to perform the
classification), but this was not unexpected. It is known that
movement, and the imagery of movement, elicits activity in
the portion of the motor cortex contralateral to the side of
movement. In the motor imagery classification problem, the
NIRS signals were collected bilaterally over the motor cortex,
and thus the problem was one of differentiating activation in
distinctly different brain regions (i.e. the left and right motor
cortices). Though this is certainly non-trivial, there is an
added complexity in our problem in which the goal was to
differentiate activation occurring due to different tasks in the
same brain region. Also important to note is the fact that the
present study had twice the number of subjects as the motor
imagery study. Because the tasks we have investigated require
only cognitive capability, they may be a more appropriate
alternative for use in a BCI for individuals with severe motor
disabilities, for whom motor imagery tasks may be difficult,
or even impossible, to perform. Further work must be done to
investigate the feasibility of classifying activity due to mental
arithmetic and music imagery in individuals from the target
population. The prospects are promising, however, as these
tasks have already been shown to be individually detectable
by NIRS in individuals with ALS [27, 46].

4.4. Two-choice paradigm

We have designed the algorithm described in section 2.5 to
be suitable for use in a two-choice BCI operating under a
synchronized control paradigm [56]. The goal would be to
collect, for each task, a sample of data with which to initially
tune the HMM parameters offline. The user would then
begin learning to operate the BCI online. There would be
system-defined control intervals during which the user would
be asked to perform either music imagery or mental arithmetic
to indicate one of two choices—yes or no, for example. The
system would evaluate the user’s brain activity only during
these defined control periods, with the HMM classifier being
used to determine which task was performed, and thus how the
user responded (i.e. yes or no) during a given control period.
At the end of each session, as more data became available, the
model parameters would be updated.

4.5. NIRS-BCI: challenges

Though a majority of BCI research has focused on
electroencephalography (EEG) as the measurement modality,
NIRS has been gaining attention due to the many advantages
it affords. It has good spatial resolution (within the order
of a centimetre depending on probe geometry), and is not
affected by interference from electrophysiological artefacts

such as EMG, ECG and EOG [21]. Furthermore, the thought
processes required to intentionally generate the signals are
relatively simple, and the signals more directly reflect a
cognitive function than their EEG counterparts [19]. For BCI
applications, NIRS is also advantageous over fMRI due to its
portability and lower cost.

However, there are also some challenges associated with
NIRS in the context of BCI applications. One example is
speed—the information transfer rate of an NIRS-BCI will
be significantly limited due to the inherent latency of the
hemodynamic response. The peak response has been shown
to occur approximately 5–8 s post-stimulus [11, 19, 21].
With the technique presented here, a 20 s activation period
would be needed to classify the activity as resulting from
mental arithmetic or music imagery, which would translate
to a maximum information transfer rate of just 3 bits min−1.
While this transfer rate is comparable to the rates achieved
in previous NIRS-BCI studies [20], one could potentially
accelerate communication by reducing the window size
for classification [57]. Further work must be done to
determine the temporal window which will provide the optimal
trade-off between speed and accuracy. BCIs based on the
electroencephalographic response, which is inherently much
faster than the hemodynamic response, can achieve transfer
rates between 10 and 25 bits min−1 [58].

Also challenging is the fact that, as noted by [51],
the power of NIRS signals is dominated by both physical
and physiological noise—introduced by subject movement,
heart rate, respiration and other physiological trends like
the Mayer wave—making functional activity very difficult
to identify without significant pre-processing. We mitigated
the effects of systemic blood flow through the use of a low-
pass wavelet filter, but we did not incorporate any techniques
for motion artifact removal. In this study, subject movement
was intentionally limited, but in a practical situation where
the user could have involuntary movements, motion artefact
would have to be explicitly addressed. Techniques such as
adaptive filtering, Weiner filtering, or principal component
analysis could offer potential solutions for efficient motion
artifact removal [51].

4.6. Study limitations

It should also be noted that the conditions of this study were
controlled beyond just restricting subject movement. The
experimental sessions were conducted in a quiet room with
minimal extraneous auditory and visual distractions. It is
unclear what the effects of such distractions would have been
on both the cortical activation patterns and the user’s ability
to focus on the required tasks. Further work must be done to
ensure that acceptable performance levels can be maintained
in more natural, uncontrolled environments. Furthermore, in
this study, the subject’s only role was to perform the given task
when cued to do so. In this case, all of his or her attention
could be focused on performance of the task. However, in a
real functional application this would not be the case. Using
the BCI in a practical way would introduce additional cognitive
load, associated with, for example, spelling a word, making
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a decision, concentrating on the changing display, etc. Task
performance would likely be affected when the task-related
activity must be generated amid this unrelated mental activity.

Another limitation of this study was that data were
collected over just three experimental sessions. We do not
know how the differentiability of the two tasks would change
over time, as the participant gained proficiency with the tasks.
Would this proficiency allow the user to elicit greater, more
characteristic patterns of activity for each task, or would it
cause the task to be less cognitively demanding, resulting in
a reduction in activity levels and a more general activation
pattern? Longer-term studies must be conducted to investigate
these issues.

Finally, the mental arithmetic task may be difficult for
children. Further work must be done to investigate the
differentiability of other cognitive tasks (e.g. verbal tasks) that
may be more suitable for those who are unable to perform the
arithmetic task.

5. Conclusion

In summary, prefrontal NIRS signals due to two different
cognitive tasks, namely, mental arithmetic and music imagery,
were measured in a controlled laboratory environment and
classified using maximum likelihood classifiers based on task-
specific hidden Markov models. Classification accuracies
well in excess of chance were attained for all participants.
While these results are encouraging, issues such as the
slow hemodynamic response time, motion artefacts and user
distraction need to be considered in further investigations of
NIRS brain–computer interfaces driven by cognitive tasks.
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