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Abstract
In this work, the potential of using peripheral autonomic (PA) responses as
control signals for body–machine interfaces that require no physical movement
was investigated. Electrodermal activity, skin temperature, heart rate and
respiration rate were collected from six participants and hidden Markov models
(HMMs) were used to automatically detect when a subject was performing
music imagery as opposed to being at rest. Experiments were performed under
controlled silent conditions as well as in the presence of continuous and startle
(e.g. door slamming) ambient noise. By developing subject-specific HMMs,
music imagery was detected under silent conditions with the average sensitivity
and specificity of 94.2% and 93.3%, respectively. In the presence of startle
noise stimuli, the system sensitivity and specificity levels of 78.8% and 80.2%
were attained, respectively. In environments corrupted by continuous ambient
and startle noise, the system specificity further decreased to 75.9%. To improve
the system robustness against environmental noise, a startle noise detection and
compensation strategy were proposed. Once in place, performance levels were
shown to be comparable to those observed in silence. The obtained results
suggest that PA signals, combined with HMMs, can be useful tools for the
development of body–machine interfaces that allow individuals with severe
motor impairments to communicate and/or to interact with their environment.
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1. Introduction

Physical disabilities often make extremely difficult or completely impossible for an individual
to independently communicate or to interact with the surrounding environment. Access
technologies, or human–machine interfaces, serve to translate user intentions into useful
control signals. Representative technologies can include eye gaze (Sesin et al 2008), head
(Chen 2001) and tongue control devices (Struijk 2006), gesture (Roy et al 1994) and speech
recognition (Su and Chung 2001), as well devices based on residual muscle contractions
(Alsayegh 2000). Such technologies, however, require volitional (residual) motor control,
and hence are not applicable to individuals who posses no functional movement or speech
as a result of e.g. degenerative motor neuron diseases, cerebral palsy, brain stem stroke or
traumatic brain injuries. Such individuals are cognitively active but are ‘locked’ in a non-
functional body. To this end, brain–machine interfaces (BMI) have emerged as promising
solutions.

As the name suggests, BMI use the brain activity—harnessed via e.g.
electroencephalography (EEG), electrocorticography (ECoG), functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG) or near-infrared spectroscopy (NIRS)—to
develop control signals for the machine interaction. As argued by van Gerven et al (2009),
however, existing solutions require lengthy user training sessions and can cause premature user
fatigue as significant mental effort is required to produce detectable brain signals. Additionally,
the system performance can be severely affected from the interference caused by hair (e.g.
with EEG- and NIRS-based technologies). These shortcomings can cause user frustration and
lead to device abandonment (van Gerven et al 2009).

More recently, studies have shown that physiological signals can be volitionally controlled
and used to translate functional intent into actions; such technologies have been termed body–
machine interfaces. Promising systems have been proposed based on facial temperature
changes (Memarian et al 2009), skin electrodermal activity (EDA), also known as the galvanic
skin response (e.g. Blain et al 2006, Tsukahara and Aoki 2002), and salivary pH levels
(Wilhelm et al 2006). Additionally, signals such as heart rate (HR), respiration rate (RR) and
skin temperature (ST) have been previously explored for biofeedback and mental relaxation
(Blain et al 2008a). Hence, such signals have the potential of serving as additional modalities
for the development of body–machine interfaces.

The overarching goal of this study was to investigate the potential of using four non-
invasively acquired peripheral autonomic (PA) signals, namely EDA, ST, HR and respiration,
to automatically discriminate between two cognitive states. More specifically, the proposed
system used hidden Markov models (HMMs) to distinguish between baseline (i.e. rest) and a
higher cognitive state of music imagery (singing in one’s head). Automated detection of music
imagery can be used, for example, as a binary signal to control a body–machine interface.

Moreover, in order to develop technologies that can be taken beyond controlled scenarios
and into everyday surroundings, the effects of environmental factors need to be ascertained.
Previous studies have suggested, for example, that distracting auditory stimuli can have a
detrimental effect on technologies based on PA signals (Cook et al 1991) due to involuntary
startle-reflex responses. In light of this issue, we propose a simple startle noise detection and
compensation scheme to suppress erroneous activations resultant from involuntary responses.
The experiments described herein suggest that reliable system accuracy can be achieved under
both silent and noisy conditions.

The remainder of this paper is organized as follows. Section 2 provides a description of
the materials and methods used in the study. Experimental results are reported in section 3 for
both silent and noisy environmental conditions. Lastly, conclusions are drawn in section 4.
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Figure 1. Stimulus pattern for the test imagery sessions. Reported time values are given for trials
(a) without and (b) with an initial 60 s period for the user to habituate to the continuous ambient
noise.

2. Materials and methods

2.1. Participants

Six adult participants (two males, four females) with a mean age of 28.1 ± 9.9 years participated
in the study. Ethical approval was obtained from the affiliated institutes and the participants
freely consented to participate. They were required to have normal hearing.

2.2. Protocol

The participants were involved in ten data collection sessions over a course of 2 days. Four
sessions consisted of baseline trials, each 130 s in duration, with participants sitting at rest
performing no mental task. The participants were instructed to focus on their breathing and
to clear their minds. Half of these sessions were performed in a controlled silent environment
and the other half in the presence of five randomly played startle stimuli. Noise stimuli were
all approximately 800 ms in duration and their respective loudness intensities in decibel (dB)
were dog barking (80 dB), glass breaking (91 dB), door slamming (83 dB), person coughing
(79 dB) and sneezing (82 dB).

The remaining six sessions consisted of the participants alternating between rest (i.e.
baseline) and music imagery tasks. Before each session, the participants were instructed to
select a minimum of two songs of the same emotional valence to be used throughout the
session. The participants were cued to start and stop music imagery with a light tap on
the arm. Of these six sessions, two were performed in a controlled silent environment, two in
the presence of five startle stimuli and two in the presence of combined continuous ambient
noise (i.e. ‘humming’ of an air conditioner) and startle noises. Figure 1 depicts the stimulus
pattern used. The last session involving continuous ambient noise lasted 280 s and consisted
of an initial 60 s habituation period followed by alternating 20 s rest and imagery segments.
For sessions under silent and startle noise conditions, this habituation period was not included;
thus, those sessions lasted 220 s, as illustrated in figure 1. For all sessions, the participants sat
comfortably on a desk and were equipped with four physiological signal sensors described in
section 2.3.1.

2.3. System description

Figure 2 depicts the overall design of the proposed system. Four physiological signals, namely
EDA, ST, HR and RR, were collected while the individual sat quietly at rest (baseline) and
alternated between music imagery and rest (see section 2.2). Baseline data were used to train
user-specific reference HMMs representative of the physiological response of the individual
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Figure 2. Overall design of the proposed interface. Four independent PA signals, namely EDA,
ST, HR and RR, were measured and used to train subject-specific HMMs. Startle noise detection
was used to improve the system performance in noisy environments.

at rest. Music imagery test data were scored against the reference HMMs via a log-likelihood
measure and the obtained scores were used for automatic music imagery detection. A detailed
description of each block is provided in the following subsections.

2.3.1. Physiological signal measurement and pre-processing. The four physiological signals
were recorded simultaneously using a ProComp Infiniti multi-modality encoder (Thought
Technology, Montreal, Canada) at a sampling frequency of 256 Hz. All sensors were placed
on the non-dominant hand of the participant. EDA was measured from two 10 mm diameter
Ag–AgCl surface electrodes attached to adhesive collars on the medial phalanges of the
index and middle fingers. A constant 0.5 V was applied between the two electrodes. ST
was measured using a thermal sensor on the distal phalange of the fifth finger. HR was
computed from the interbeat intervals of the blood volume pressure waveform obtained with
a photoplethysmograph sensor attached to the distal phalange of the fourth finger. Lastly, RR
was measured by positioning a piezoelectric belt around the thoracic area; stretching due to
expansion and contraction of the chest was converted into changes in voltage.

Signal pre-processing consisted of low-pass filtering for signal denoising. Fifth-order
Butterworth filters with 0.2, 0.1, 1.2 and 0.3 Hz cutoff frequencies for EDA, ST, HR and RR,
respectively, were used. The pre-processed PA signal temporal series were concatenated to
form a K-dimensional feature vector O, K = 1, . . . , 4, where the time dependence has been
omitted for notation simplicity. Feature vectors were subsequently used to train statistical
models of physiological responses of the individuals at rest.

2.3.2. PA signal combination. In order to quantify the contribution of each PA signal, a
normalized mutual information measure Inorm was used. Normalized mutual information is
given by Kvalseth (1987):

Inorm(Xi, Y ) = 2I (Xi, Y )

H(Xi) + H(Y)

= 2(H(Xi) + H(Y) − H(Xi, Y ))

H(Xi) + H(Y)

= 2 − 2H(Xi, Y )

H(Xi) + H(Y)
, (1)
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where H(·) denotes the marginal entropy and H(Xi, Y ) the joint entropy between Xi and Y.
In this study, Xi denotes each individual PA signal, i = 1, . . . , 4, and Y the stimulus pattern
depicted in figure 1. The signal with Inorm closest to unity represents the signal over which the
user had the greatest volitional control; such a signal should contribute the most towards the
imagery detection task at hand.

2.3.3. Hidden Markov models. HMMs, trained on the four collected physiological signals,
were used to model the physiological response of the individual at rest. It was hypothesized that
during cognitive tasks such as music imagery, physiological signals would undergo changes
that deviated from this baseline response and such changes could be detected by means of a log-
likelihood measure. Here, we use HMMs to capture the complex temporal signal interactions
that arise once the user initiates the cognitive task. HMMs have been extensively used in the
past for applications such as speech recognition and brain–computer interfaces, and hence are
only briefly described here. The reader is referred to Rabiner (1989) for a detailed description.

HMMs represent a Markovian process with observable outputs being driven by the
unobservable (hidden) states. To establish some notation, let Q be the number of states
in the HMM and qt indicate the state of the HMM at the time t. As such, an HMM can be
completely characterized by three parameters λ = {π, A, B}, where

• π = {π1, . . . , πQ} is the initial state distribution with πj = Pr(q0 = j),
• A = {ai,j } is the transition matrix with ai,j = Pr(qt = j |qt−1 = i) describing the

probabilities of transitioning from the state qi to the state qj, 1 � i, j � Q, and
• B= {bj (O)} is the observation probability distribution with bj (O) given by a Gaussian

mixture model (GMM) with M-K-variate Gaussian components and diagonal covariance
matrices for the state j , j = 1, . . . ,Q.

Commonly, HMM–GMM model parameters λ are iteratively estimated with the
expectation–maximization (EM) algorithm (Dempster et al 1977, Rabiner 1989) using
training data vectors; the k-means algorithm (Gersho and Gray 1993) is used for parameter
initialization. A major disadvantage of the EM approach is that the number of Gaussian
components M has to be determined a priori. Large M may result in a model that overfits the
training data, whereas small M may result in models that are not accurate. In this study, a
recursive greedy-EM algorithm is used where model parameters and the number of Gaussian
components were estimated simultaneously using a Bayesian information criterion (Hu et al
2005). For HMMs with Q varying from 2 to 4, the number of Gaussian components M found
via the greedy EM algorithm was found to be between 2 and 4 for different participants. It is
interesting to note that such values are consistent with brain–computer interface studies based
on HMMs (e.g. Sitaram et al 2007, Obermaier et al 2001).

The PA signals collected during baseline trials performed in silence (see section 2.2) were
used to train HMMs for each of the six participants. Different HMM configurations were
explored on a per-participant basis in order to allow for a user-centred approach due to the
inter-subject variability resultant from external factors such as mental alertness, innate reflex
reaction time, as well as familiarity with the procedure.

2.3.4. Automatic music imagery detection for body–machine interface control. Automatic
music imagery detection was proposed as a means of developing control signals for body–
machine interface usage. In order to detect music imagery events, PA signal temporal series
(O(t)test) were computed from the imagery test trials described in section 2.2, with a running
window of length L, and scored against the reference HMMs using a normalized likelihood
measure
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LH(l) = Pr(O(l)test|λ)

= 1

L

∑

q

πq0

l+L−1∏

t=l

aqt−1,qt
bqt

(O(t)test), (2)

where l = 0, . . . , T − L + 1, T was the signal duration, window lengths ranging from L =
1–15 s were explored and a window overlap of 0.33 s was used (i.e. LH was computed at a
3 Hz ‘sample rate’). For numerical stability, the log-likelihood version of (2) was used in the
simulations described in section 3. Different window lengths were explored to account for the
user-specific latencies inherent to the physiological signals, which can range from 1 to 15 s
(Kistler et al 1998).

Higher log-likelihood values suggested physiological responses similar to those observed
during rest. Lower log-likelihood values, in turn, indicated deviations from such responses
and were indicative of volitional mental activity. As such, a decrease in the likelihood function
was expected during imagery periods and either an increase or a constant value was expected
during the rest periods. A positive-to-negative slope change in the log-likelihood function
was thus used to trigger candidate music imagery events. To compensate for possible motion
artefacts that may produce a momentary positive-to-negative slope change, we imposed an
additional criterion for the positive identification of music imagery, namely, that the negative
slope must persist for at least 5 s. This limitation poses an upper bound on the system
information transfer rate of 12 bits min−1, which is somewhat lower than EEG-based BMIs,
but still higher than those based on NIRS (van Gerven et al 2009). In summary, a music
imagery event was detected at time n if

(i) sgn(LH(n − 1) − LH(n − 2)) > 0,
(ii) sgn(LH(n) − LH(n − 1)) < 0 and

(iii) (LH(n + P) − LH(n + P − 1)) < 0 for P = 1, . . . , 15,

where ‘sgn’ represents the sign function. The plot in figure 3 depicts a representative log(LH)

temporal series illustrating the expected increases during rest (unshaded) and decreases during
music imagery (shaded), as well as the detected imagery segments (represented by the symbol
‘◦’).

2.3.5. Startle noise detection. The performance of mental tasks can be severely affected
by ambient noise (e.g. Gumenyuk et al 2004, Cassidy and MacDonald 2007, Flaten et al
2005, Furnham and Strbac 2002). Moreover, physiological signals are sensitive to distracting
auditory stimuli (Cook et al 1991); thus, it was expected that the body–machine interface
performance would degrade when used in noisy environments. The log-likelihood temporal
series computed for baseline data under startle noise conditions (see section 2.2), shown
in figure 4, illustrates this behaviour. The sustained decreases in log-likelihood slopes,
observed post-startle stimuli onset, would suffice to generate erroneous detection of ‘imagery’
events. In order to improve the system performance in practical environments, an airbourne
microphone, combined with an acoustic energy thresholding based startle noise detection
algorithm (described in detail elsewhere (Falk and Chan 2008)), was used to suppress erroneous
activations resultant from involuntary startle-reflex responses.

Once acoustic startle noises are detected, erroneous detections due to startle reflexes need
to be suppressed. As seen from figure 4, however, sustained decreases in log(LH) can have
latencies of up to 7 s post-onset of a startle stimulus. Here, a simple compensation scheme
was explored; activations that started within 5 s (empirically set based on pilot experiments)
post-startle detection were suppressed. On the other hand, if a startle was detected after a
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Figure 3. Log-likelihood temporal series computed from the test data consisting of alternating rest
(unshaded regions) and imagery (shaded) periods. The circles represent correctly detected music
imagery events.

sustained decrease in log(LH) had been observed for at least 2.5 s, suppression did not occur
as it was assumed that music imagery was already being performed.

2.4. System evaluation: performance metrics

To objectively quantify the system performance, sensitivity and specificity were used as
performance metrics. The measures are given by

Sensitivity = TP

TP + FN
× 100%, (3)

Specificity = TN

TN + FP
× 100%, (4)

where FP and FN denote the number of false positives and false negatives, respectively; TP and
TN, in turn, represent the number of true positives and true negatives. Sensitivity is related to
the percentage of correctly detected imagery events. Specificity, on the other hand, is related to
the percentage of correctly detected rest intervals. Specificity values close to unity indicated
that erroneous detections seldom occurred; in the context of startle noise compensation, it
indicated that erroneous interface activations had been correctly suppressed.

For the developed body–machine interface, TP are defined as correctly detected activations
which occurred within 7.5 s post-transition from rest to imagery. This grace period accounts
for the participant reaction time, i.e. delay in initiating music imagery and the response latency
associated with the physiological signals under consideration. FP are defined as erroneously
detected activations which occur during rest intervals. FN, in turn, account for genuine
activations that are not detected during imagery and TN account for correctly classified rest
periods.
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Figure 4. Log-likelihood temporal series computed from baseline data (without music imagery)
in the presence of three startle stimuli. The circles represent erroneously detected music imagery
events.

3. Experimental results

This section reports the contribution of each signal and the overall performance obtained under
silent and noisy conditions.

3.1. Gauging signal contributions

As mentioned previously, normalized mutual information (Inorm) was used to gauge the
contribution of each PA signal to imagery detection. Table 1 reports Inorm between each
of the four PA signals under consideration and the stimulus pattern depicted in figure 1;
signals with larger Inorm correspond to signals which contributed more to imagery detection.
As can be seen, EDA and ST were the two modalities which contributed the most to imagery
detection for all six participants; half the participants had EDA as their major contributor,
a finding that resonates with those reported in Blain et al (2006, 2008b). Conversely, all
participants had RR as the signal that contributed the least; a similar finding has been reported
in the polygraph literature (Ben-Shakhar and Dolev 1996).

Moreover, the graph depicted in figure 5 shows the system specificity and sensitivity values
obtained under controlled silent conditions for the increasing number of PA signals used to
train the subject-specific HMMs. When using only the signal that attained the highest Inorm,
the average sensitivity and specificity values of 35% and 58.3% were attained, respectively.
Performance increased monotonically as more signals were incorporated, thus suggested that
complex signal interactions due to the cognitive task were being captured by the HMMs. Once
all signals were used, the average sensitivity and specificity of 94.2% and 93.3% were attained,
respectively.

In order to improve usability, user-centred designs (UCDs) are commonly explored (Abras
et al 2004). Here, UCD was achieved by selecting optimal HMM configurations (i.e. Q and M
parameters) and window sizes L for each participant. Table 2 reports such parameters for each
individual. Throughout the course of the task interval, the participants likely did not transition
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Figure 5. System sensitivity and specificity obtained under silent conditions for the increasing
number of PA signals used to train the HMMs.

Table 1. Normalized mutual information (Inorm) between each of the four PA signals under
consideration and the stimulus pattern depicted in figure 1. The signal with largest Inorm corresponds
to the signal which contributes the most to imagery detection.

Contribution order (Inorm)

Subject First Second Third Fourth

1 ST (0.62) EDA (0.61) HR (0.41) RR (0.36)
2 ST (0.64) EDA (0.59) HR (0.47) RR (0.33)
3 EDA (0.62) ST (0.60) HR (0.46) RR (0.34)
4 EDA (0.62) ST (0.59) HR (0.45) RR (0.36)
5 EDA (0.61) ST (0.52) HR (0.48) RR (0.34)
6 ST (0.60) EDA (0.59) HR (0.45) RR (0.33)

immediately from a rest state to an active music imagery state; this was likely the reason for
HMMs with four states being selected for the majority of the participants. Nonetheless, for two
participants (subjects 3 and 4), HMMs with two states were deemed optimal, suggesting the
sharper transition between the two mental states. For the same participants, shorter window
lengths were deemed optimal, hence corroborating the assumption of faster reaction times.

For practical applications, a ‘calibration’ session with known imagery and rest intervals
is needed in order to optimize system parameters. Similar to calibration sessions required
by existing speech recognizers, this can be achieved with minimal third-party intervention.
Moreover, since the proposed system requires only baseline (rest) information for HMM
training, such calibration sessions can be performed in the order of tens of seconds, and are
thus unlikely to pose a serious burden on the user. The optimal system parameters reported
in table 2 were used to estimate the performance measures in figure 5 for silent conditions, as
well as those reported in section 3.2 for noisy conditions.
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startle noise detection and compensation.

Table 2. Optimal HMM parameters and log(LH) window lengths L obtained for each participant.

Subject Q M L (s)

1 4 2 9
2 4 2 7
3 2 4 6
4 2 4 6
5 4 3 10
6 4 3 8

3.2. System performance under noisy conditions

The graph in figure 6 shows the system specificity and sensitivity when the interface was used
under noisy conditions, both with and without startle noise detection/compensation. Relative
to silent conditions, a decrease of approximately 16% was observed in system sensitivity under
noisy conditions without startle noise compensation. In terms of specificity, the decreases of
14% and 19% were observed for startle only and combined startle–ambient noise scenarios,
respectively. Once startle noise compensation was in place, the system specificity only
decreased by approximately 7% relative to silent conditions for both startle only and combined
startle–ambient noise scenarios. Such performance levels were not significantly different
(p > 0.5, t-test) from those observed in controlled silent environments.

4. Conclusions

This paper investigated the use of four non-invasively acquired physiological signals, namely
EDA, ST, HR and RR, as access channels for the control of body–machine interfaces.
Subject-specific HMMs of the normative physiological response during rest (baseline) were
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used to automatically detect volitional physiological changes due to a music imagery task.
Experiments with six able-bodied adults resulted in the average sensitivity and specificity
values of 94.2% and 93.3%, respectively, in controlled silent environments. Under noisy
conditions, the proposed system equipped with a startle noise detection and compensation
scheme achieved specificity levels similar to those attained in silence. These results are
encouraging and warrant future investigations on the use of HMMs and PA signals for body–
machine interface research.
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