
1766 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 7, SEPTEMBER 2010

A Non-Intrusive Quality and Intelligibility Measure
of Reverberant and Dereverberated Speech

Tiago H. Falk, Member, IEEE, Chenxi Zheng, and Wai-Yip Chan, Member, IEEE

Abstract—A modulation spectral representation is investigated
for non-intrusive quality and intelligibility measurement of rever-
berant and dereverberated speech. The representation is obtained
by means of an auditory-inspired filterbank analysis of critical-
band temporal envelopes of the speech signal. Modulation spectral
insights are used to develop an adaptive measure termed speech to
reverberation modulation energy ratio. Experimental results show
the proposed measure outperforming three standard algorithms
for tasks involving estimation of multiple dimensions of perceived
coloration, as well as quality measurement and intelligibility esti-
mation of reverberant and dereverberated speech.

Index Terms—Coloration, dereverberation, modulation spec-
trum, quality diagnosis, reverberation.

I. INTRODUCTION

S PEECH acoustic signals propagating in enclosed environ-
ments are distorted by multiple reflections from the walls

and other objects present in the room, hence making the speech
signal sound “colored” and “reverberant” [1]. Coloration refers
to the changes in signal timbre caused by early reflections [2],
[3]. Late reflections, in turn, cause temporal smearing and the
perceived effects depend on room geometry and wall sound
absorption properties. Reverberation is known to degrade
human-perceived speech quality and intelligibility as well as
hamper automatic speech or speaker recognition performance.
To compensate for such detrimental effects, dereverberation
algorithms have been widely used. As emphasized in [4];
however, dereverberation is a difficult and often ill-condi-
tioned problem, and can introduce objectionable artifacts to
the processed speech signals. To evaluate the performance of
dereverberation algorithms, subjective and/or objective quality
and intelligibility measurement methods are needed.

Subjective methods require a listener panel to judge and quan-
tify the quality and/or intelligibility of the processed speech
signals. Commonly, subjective quality tests have listeners rate
the quality of the speech signal on a pre-specified scale [5].
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More recently, listening tests have also been used to characterize
the subjective perception of coloration and reverberation decay
tail effects [6]. Intelligibility, in turn, can be quantified using,
for instance, nonsense syllable tests or consonant recognition
tests wherein listeners mark on a test sheet the words or let-
ters heard. Subjective tests are costly and labor-intensive, and
perhaps more significantly, they are unsuitable for real-time ap-
plications. As a consequence, computer-based objective mea-
surement methods have been the focus of more recent research
efforts (e.g., [7]–[10]).

Objective measurement methods can be broadly classified as
intrusive or non-intrusive. Intrusive measures depend on a dis-
tance metric between a clean reference speech signal and its
reverberant or dereverberated counterpart. Non-intrusive mea-
sures, on the other hand, do not depend on a reference signal. To
date, the majority of available standard objective quality mea-
sures have focused on transmission network-related distortions
and have overlooked the effects of (de)reverberation on speech
quality. Traditionally, conventional intrusive measures such as
signal-to-noise ratio, bark spectral distortion [11], and cepstral
distance [12] have been used. Such measures, however, have
been shown to correlate poorly with subjective quality ratings
[6]. In practice, original reference signals are seldom available.
Reliable non-intrusive measures offer the flexibility needed to
build practical real-time applications.

Objective intelligibility measures have been derived based
on human perceptual concepts of temporal envelope modula-
tions, making use of the so-called modulation transfer function
[13]. The speech transmission index (STI) measure exemplifies
the current state-of-the-art in objective intelligibility estimation
[10]. While the standardized STI measure depends on artifi-
cial speech-like signals, several extensions have been proposed
which allow for accurate estimation using the clean reference
speech signal and its (de)reverberant counterpart in an intrusive
manner [14]–[16]. To date, standardized non-intrusive intelligi-
bility measurement methods are not available.

In this paper, perceptual insights are used to develop an
adaptive non-intrusive measure termed speech-to-reverberation
modulation energy ratio, based on extending the work described
in [17]. More specifically, coloration and late reverberation
effects are quantified in the modulation spectral domain and
used to estimate 1) the quality components of a six-dimen-
sional coloration space [18], 2) subjective scores of perceived
reverberation tail effects and overall quality, as well as 3)
intelligibility scores. Experiments suggest that the proposed
measure outperforms three standardized quality measurement
algorithms when estimating coloration, reverberation tail ef-
fects, and overall quality. Moreover, the proposed measure
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Fig. 1. Block diagram of multichannel speech dereverberation.

attains performance comparable to a standardized intrusive
method when estimating intelligibility scores, but adding the
benefit of not requiring access to a reference signal.

The remainder of this paper is organized as follows. Section II
presents a brief overview of multichannel dereverberation sys-
tems. Section III describes the signal processing and the moti-
vation behind the proposed measure. Section IV reports exper-
imental results along with database and benchmark algorithm
descriptions. Conclusions are drawn in Section V.

II. MULTICHANNEL DEREVERBERATION

Speech propagation from a speaker to a microphone placed
in a reverberant room is conventionally modeled as a linear fil-
tering process. In scenarios where microphones are avail-
able, the reverberant signal , measured at
the th microphone is modeled as a convolution of the source
(clean) speech signal with the acoustic room impulse re-
sponses

(1)

If additive background noise is present, (1) becomes

(2)

The ultimate goal in dereverberation is to derive a signal
that is perceptually imperceptible from by processing all
the received signals , , as depicted in Fig. 1.
In reality, since the room impulse responses are unknown
and time varying, dereverberation becomes a difficult blind esti-
mation problem. Thus, dereverberation algorithms strive to im-
prove the intelligibility of the reverberant signal while mini-
mizing the introduction of unwanted artifacts, such as temporal
discontinuities [4]. Dereverberation algorithms can be classified
as single-microphone (or single-channel) or microphone array
based (or multichannel), with the latter commonly providing im-
proved performance [19].

In this paper, three conventional multichannel derever-
beration paradigms are explored, namely, delay-and-sum
beamforming, cepstral liftering, and blind subspace-based
system identification (i.e., zero-forcing time domain dereve-
beration). A detailed description of the algorithms is beyond
the scope of this paper and the reader is referred to [20] (and
references therein) for more details regarding the algorithms
and their associated parameters.

Fig. 2. Block diagram of the signal processing steps involved in the computa-
tion of modulation spectra.

III. MODULATION SPECTRAL SIGNAL REPRESENTATION

The proposed measure is computed by performing spectral
analysis on the modulation envelopes of the (de)reverberant
speech signal. In this section, we first present the signal pro-
cessing steps involved in the computation of our modulation
spectral representation. The motivation for and the developed
measure are then described.

A. Modulation Spectrum—Signal Processing

Fig. 2 depicts a block diagram of the signal processing steps
used to compute our modulation spectral representation. Here,
only a brief description is provided and the reader is referred to
[21] for a more detailed explanation. First, the processed speech
signal is filtered by a 23-channel gammatone filterbank
to emulate the processing performed by the cochlea [22]. Filter
center frequencies range from 125 Hz to nearly half the sam-
pling rate; filter bandwidths are characterized by the equivalent
rectangular bandwidth [23]. For simplicity, the remainder of this
paper will use to denote the (de)reverberant speech signal.

The temporal envelope of the filter output signal
is then computed using the Hilbert transform as

(3)

Temporal envelopes are multiplied by a 256-ms Hamming
window with 32-ms shifts and the windowed envelope for frame

is represented as . Frames of 256-ms duration are
used in order to obtain appropriate resolution for low-frequency
modulation frequencies around 4 Hz [24].

Modulation spectral energy for critical band is then com-
puted as the squared magnitude of the discrete Fourier transform

of the temporal envelope

(4)

where indexes the modulation frequency bins. Modulation fre-
quency bins are grouped into eight bands in order to emulate an
auditory-inspired modulation filterbank, as suggested by [25].
The notation is used to denote the average modulation en-
ergy over all frames of the critical-band signal grouped by
the modulation filter, with , .
Fig. 3(a) depicts a representative (also called modulation
spectrogram) for a clean speech signal. The modulation spec-
trogram depicts the distribution of modulation energy as a func-
tion of modulation frequency and acoustic frequency, averaged
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Fig. 3. Modulation spectrogram of (a) clean, (b) reverberant speech with � � ��� ms, and speech processed by (c) delay-and-sum beamformer, (d) cepstrum
liftering, and (e) subspace-based dereverberation algorithms.

over all speech frames. Additionally, the average per-modula-
tion band energy is denoted by

(5)

B. Modulation Spectral Insights

Slow temporal envelope modulations have been shown to
provide useful cues for objective quality [26] and intelligibility
[27] estimation. It is known, for example, that for clean (ane-
choic) speech, temporal envelopes contain frequencies ranging
from 2–20 Hz with spectral peaks at approximately 4 Hz,

which corresponds to the syllabic rate of spoken speech [28]
[see Fig. 3(a)]. With reverberant speech, the diffuse reverbera-
tion tail is often modeled as an exponentially damped Gaussian
white noise process. With increasing reverberation levels, the
signal attains more Gaussian white-noise like properties. Given
the property that temporal envelopes, computed via a Hilbert
transformation, can contain frequencies up to the bandwidth of
the envelope bearing signal [30], it is expected that reverberant
signals exhibit higher-frequency temporal envelopes due to the
“whitening” effect of the reverberation tail [31].

This property is illustrated with the modulation spectrograms
depicted in Fig. 3. Subplots (a) and (b) illustrate the modula-
tion spectrogram for a clean and reverberant speech signal with
a reverberation time ms, respectively. As can be
seen, for clean speech, the bulk of the modulation energy is
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Fig. 4. Per-band modulation energy versus reverberation time �� � for mod-
ulation band (a) � � � (�4 Hz) (b) � � � (�50 Hz).

situated at below 20 Hz, and peaks at around 4 Hz. Reverber-
ation, on the other hand, causes smearing of the energy into
higher modulation frequencies. Subplots (c)–(e), in turn, depict
modulation spectrograms of the reverberant speech signal after
processing by a delay-and-sum beamformer (DSB), cepstral lif-
tering and subspace-based dereverberation algorithms, respec-
tively. As observed, high-frequency modulation energy is still
present post dereverberation, thus suggesting lower quality and
intelligibility relative to clean speech.

As such, suitably crafted features extracted from the modu-
lation spectrum can provide useful information for non-intru-
sive quality and intelligibility measurement. To further inves-
tigate the effects of multichannel dereverberation on the mod-
ulation spectrum, 330 anechoic speech signals are convolved
with room impulse responses measured by a linear microphone
array in four different enclosures (reverberation time values of

, 319, 422, and 533 ms) [20]. The three derever-
beration algorithms described in Section II are applied to the
reveberated signals. For the deverberation processed signals,
Fig. 4(a) and (b) plots for modulation bands and

, corresponding to modulation frequencies around 4 Hz
and 50 Hz, respectively.

As seen from Fig. 4(a), low-frequency modulation energy is
slightly increased ( 0.1 dB) for reverberant speech relative to
clean speech. The effect, however, is shown to be relatively in-
dependent of reverberation time and is likely due to early reflec-
tions. This conjecture is corroborated by the experiments with

Fig. 5. Modulation spectrogram of (a) clean speech signal and (b) its colored
counterpart.

an artificially generated coloration dataset, reported in [18], and
the illustration in Fig. 5. As can be seen, early reflections em-
phasize modulation frequency content around 4 Hz. As such, the
early reflections likely cause the improved intelligibility that has
been observed with strong early reflections whose delay times
are around 50 ms [32]. Fig. 4(a) also shows that the derever-
beration algorithms decrease the low-frequency modulation en-
ergy by between 0.1–0.3 dB below clean speech. The decrease is
likely due to introduced artifacts which degrades intelligibility.
At a reverberation time ms, cepstral liftering sup-
presses low-frequency modulation content the most.

Fig. 4(b) shows the higher modulation frequency channel
exhibiting a stronger dependency of modulation energy on
reverberation time. The modulation energy (in dB) increases
almost linearly with reverberation time. The delay-and-sum
beamformer is shown to attain the most suppression and re-
duce the high-frequency modulation energy by approximately
1 dB relative to reverberant speech. The gain, however, is still
modest; an approximately 2.5 dB difference remains between
anechoic and dereverberated speech for reverberation time of
533 ms. Such difference is due to the residual reverberation tail
that remains post dereverberation.

C. Proposed Measure

Using the insights described above, an adaptive mea-
sure termed speech to reverberation modulation energy ratio
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(SRMR) is proposed for non-intrusive quality diagnosis of
(de)reverberant speech. The measure is given by

(6)

where the upper summation bound in the denominator
is adapted to the speech signal under test. As mentioned
in Section III-B, modulation frequency content for acoustic
frequency band is upper-bounded by the bandwidth of
critical-band filter . As such, speech signals with different
acoustic frequency content, subjected to the same reverberation
effects, can result in different modulation spectra.

Plots in Fig. 6(a) and (b) illustrate a representative ex-
ample where the percentage of modulation energy present
per acoustic frequency channel is plotted versus acoustic fre-
quency. The plots are for anechoic speech produced by two
different speakers and then convolved with a room impulse
response with a reverberation time of ms. As can
be seen, for subplot (a), 90% of the total modulation energy
is obtained below 600 Hz. For subplot (b), in turn, 90% of the
total energy is obtained below 1 kHz. The bandwidths of the
gammatone filters centered at such frequencies are 86 Hz and
131 Hz, respectively. As a consequence, due to properties of
the modulation filterbank [21], negligible energy at modulation
frequency band (centred at around 128 Hz) is expected
from the signal represented in subplot (a). In the experiments
described in Section IV, is chosen on a per-signal basis and
depends on the bandwidth of the lowest gammatone filter for
which 90% of the total energy is accounted for. As examples,
for the speech signals represented in Fig. 6(a) and (b),
and , would be used, respectively.

IV. EXPERIMENTAL RESULTS

In this section, the three datasets used in the experiments are
described, benchmark algorithms are detailed, and quality and
intelligibility estimation results are presented.

A. Database Description

Three databases are used in our experiments and are detailed
in the subsections below.

1) Database 1—Multidimensional Coloration Space: The
first database is used to investigate the effectiveness of the pro-
posed measure in estimating multiple dimensions of perceived
coloration. Different coloration effects are artificially generated
by manipulating three coloration control parameters, namely,
spectral roughness, spectral tilt, and local spectral extremes.
Speech signals are digitized with 16-bit precision and 22.5-kHz
sampling rate. The reader is referred to [18] for more details.

A subjective verbal attribute listening test was performed with
16 expert listeners (with audio or musical background), all male
with no reported hearing loss. Subjects were presented with the
reference anechoic speech signal and its colored counterpart and
were asked to rate the latter using six attributes: warm, thin,
cold, bright, boomy, and muffled. Following the suggestions of

Fig. 6. Percentage of total modulation energy, per acoustic frequency band, for
speech signals from two different speakers.

[33], each attribute is rated on a nine-point scale that is anchored
by the attribute at one end and its opposite at the other end,
e.g., thin and not thin. Seventeen different coloration-distorted
speech files were generated from each clean speech file, com-
prised of a concatenated female- and male-uttered sentence to
minimize the bias of speaker dependent characteristics [18]. The
subjective ratings for each attribute were averaged over all the
listeners to create six mean opinion scores for each speech file.

2) Database 2—(De) Reverberation Quality: The second
database is a subjectively scored multichannel acoustic rever-
beration database termed Multichannel Acoustic Reverberation
Database at York (MARDY) developed for evaluation of dere-
verberation algorithms [6]. The database uses room impulse re-
sponses which were collected with a linear microphone array
in an anechoic chamber with reflective panels and absorptive
panels in place. Speaker to microphone distances varied be-
tween 1–4 m (1-m increments) and reverberation time values
ranged from ms to 447 ms. Reverberant speech was
generated with the collected room impulse responses and ane-
choic speech from two speakers (one male and one female).

Three dereverberation paradigms were tested, namely,
delay-and-sum beamforming, a proprietary multichannel
method based on a statistical model of late reverberation
and spectral subtraction, and a proprietary multi-microphone
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method based on spatio-temporal averaging operating on the
linear prediction residual; the reader is referred to [6] for more
details. The positions of the source and microphones were
assumed to be known for all three methods. As the proprietary
portion of the database is not publicly available, for the exper-
iments described herein, only the reverberant speech signals
and the signals processed by the delay-and-sum beamformer
are used. Speech signals are digitized with 16-bit precision and
16-kHz sampling rate.

A multidimensional subjective listening test was performed
following the guidelines of the International Telecommunica-
tions Union ITU-T Recommendation P.835 [34]. In the test,
26 normal hearing listeners rated the subjective perception of
coloration (COL), reverberation tail effect (RTE), and overall
speech quality (MOS) for 32 speech signals uttered by both male
and female speakers. For each category, listeners used a 5-point
scale where a rating of 5 indicated the best score and a rating of 1
the worst score. Speech examples were presented to the listeners
in order to familiarize them with identification and quantifica-
tion of coloration and reverberation tail effects.

3) Database 3—(De) Reverberation Intelligibility: The third
database consists of a modified version of the popular Wall
Street Journal November 92 speech recognition evaluation test
set. The original dataset consists of 330 sentences uttered by
eight different speakers, both male and female, in clean condi-
tions. The modified version consists of the 330 aforementioned
speech signals convolved with six-channel room impulse re-
sponses measured by a linear microphone array in four different
enclosures with reverberation times of 274, 319, 422, and
533 ms [20]. Reverberant speech signals are further processed
by the three dereverberation algorithms described in Section II.
Speech signals are digitized with 16-bit precision and 16-kHz
sampling rate.

Motivated by the work described in [35], three speech-based
derivatives of the popular speech transmission index (STI) are
used as measures of speech intelligibility. The three intrusive
measures were proposed by Payton [15], [36], Drullman [14],
[37], and Goldsworthy [16]; a detailed description of the signal
processing computation for the three measures is given in [16].
Previous research has suggested that the three measures are re-
liable predictors of speech intelligibility for nonlinear distortion
conditions such as (de)reverberation [38], [39], with the method
proposed by Goldsworthy attaining superior performance [16].

B. Benchmark Algorithms

The performance of the proposed SRMR measure is com-
pared to that of three standard quality measurement algorithms,
two of which are non-intrusive. The intrusive algorithm is the
ITU-T standard P.862 algorithm, better known as Perceptual
Evaluation of Speech Quality (PESQ) which has a narrowband
(8-kHz sample rate) [7] and a wideband (16 kHz) [40] version.
With PESQ, both the reference and processed (reverberant or
dereverberated) signals are transformed to a psychophysical
representation by means of perceptual frequency mapping
and compressive loudness scaling. The difference between the
psychophysical representations of the degraded and reference
speech signals is then calculated and mapped to a quality

score using a cognitive-like regression model. PESQ has been
widely used for quality measurement of network transmitted
speech and represents the current state-of-the-art in intrusive
quality measurement. Its use, however, is not recommended
for reverberant or dereverberated speech [7], [41]; nonetheless,
recent research has suggested accurate ratings for reverberant
speech [42].

The two non-intrusive standard measures include the ITU-T
standard P.563 [8] and the American National Standards In-
stitute ANSI standard ANIQUE+ [9]. The P.563 algorithm
combines three principles for speech quality measurement
[43]. First, vocal tract and linear prediction analysis is per-
formed to detect unnaturalness in the speech signal. Second,
a pseudo-reference signal is reconstructed by modifying the
computed linear prediction coefficients to fit the vocal tract
model of a typical human speaker. The pseudo-reference signal
serves as input, along with the degraded speech signal, to a
double-ended algorithm (similar to ITU-T P.862) to generate a
basic voice quality measure. Lastly, specific distortions such as
noise, temporal clippings, and robotization effects (voice with
metallic sounds) are detected.

A total of 51 characteristic signal parameters are calculated
and based on a restricted set of eight key parameters, one of
six major distortion classes is detected. The distortion classes
are, in decreasing order of annoyance: high level of background
noise, signal interruptions, signal-correlated noise, speech robo-
tization, and unnatural male and female speech [43]. For each
distortion class, a subset of the extracted parameters is used to
compute an intermediate quality rating. Once a major distortion
class is detected, its intermediate score is linearly combined with
eleven other parameters to derive a final quality estimate. P.563
represents the current state-of-the-art in non-intrusive quality
measurement. While the algorithm has demonstrated accept-
able accuracy for transmission systems with echo cancelers [8],
recent research has reported poor correlation with subjective
quality ratings for reverberant and dereverberated speech [17],
[42].

The second non-intrusive benchmark algorithm is
ANIQUE+. The algorithm became an ANSI standard after
being “narrowly beaten” by P.563 in the ITU-T competition
to standardize a non-intrusive model in 2004 [44]. The al-
gorithm is based on three distortion measurement modules:
mute, non-speech, and articulation. The mute distortion module
detects unnatural mutes in the speech signals and quantifies
their effects on speech quality. The non-speech module, in
turn, detects and quantifies the effects of annoying non-speech
activities, such as those resultant from inserting erroneous bits
into a speech decoder [45]. Lastly, the articulation distortion
module uses modulation spectral concepts similar to those used
in the proposed measure. More specifically, ANIQUE+ com-
putes for each critical band a so-called normalized articulation
energy (average modulation energy between 2–30 Hz modula-
tion frequencies), normalized non-articulation energy (average
modulation energy for frequencies greater than 30 Hz), and the
energy across the critical band. The three entities computed for
all the critical bands are mapped to a frame distortion score by
means of a multilayer perceptron. The frame distortion scores
are aggregated, separately over active and inactive frames. The
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TABLE I
PERFORMANCE COMPARISON BETWEEN SRMR, PESQ, P.563, AND ANIQUE+ ON DATABASE 1. COLUMN LABELED “� �” INDICATES THE CORRELATION

IMPROVEMENT GIVEN BY (7). AVERAGE CORRELATION IMPROVEMENT IS COMPUTED OVER THE THREE BENCHMARK ALGORITHMS

TABLE II
PERFORMANCE COMPARISON BETWEEN SRMR, PESQ, P.563, AND ANIQUE+ ON DATABASE 2. COLUMN LABELED “� �” INDICATES THE CORRELATION

IMPROVEMENT GIVEN BY (7). AVERAGE CORRELATION IMPROVEMENT IS COMPUTED OVER THE THREE BENCHMARK ALGORITHMS

three distortion modules’ outputs are finally linearly combined
to produce an overall quality score.

C. Multidimensional Coloration Estimation Performance

Table I reports correlation values attained between the
proposed measure and the multidimensional subjective col-
oration ratings available with Database 1 (see Section IV-A1);
performance is compared to that obtained with the three
benchmark algorithms. Since the majority of the benchmark
algorithms operate at an 8-kHz sampling rate, results reported
throughout the remainder of this paper will be based on sub-
sampled versions of the databases described in Section IV-A.
The column labeled “ ” lists the percentage improvement in
correlation obtained by using SRMR relative to algorithm “X.”
The correlation improvement is computed as

(7)

and indicates percentage reduction of the performance gap of
algorithm “X” to perfect correlation. Note that the correlation
signs in Table I are consistent with Table 1 in [18]. As can be
seen, the proposed measure outperforms the three benchmark
algorithms for all six dimensions in the coloration space. Corre-
lation improvements, averaged over the benchmark algorithms,
are greater than 68% for all dimensions, with average improve-
ments of up to 75.9% being observed for dimension “warm.”
Performance improvements are more pronounced relative to the
two benchmark non-intrusive algorithms.

D. Quality Measurement Performance

Table II reports correlation values attained between the three
subjective scores available with Database 2 and the proposed
measure and three benchmark algorithms. As observed, the
proposed measure is shown to reliably estimate the three
quality dimensions for both reverberant and dereverberated

speech. Overall, SRMR is shown to outperform the intrusive
and non-intrusive benchmark algorithms by an average 55%,
37%, and 33% for the COL, RTE, and MOS dimensions,
respectively. For dereverberated speech, higher gains are ob-
served and average improvements of 64%, 44%, and 38% are
attained for the COL, RTE, and MOS dimensions, respectively.
For reverberant speech, ANIQUE+ is shown to outperform
SRMR in MOS estimation. Notwithstanding, the capability
of the proposed measure to reliably estimate coloration and
reverberation tail effects, in addition to overall quality, suggests
it is a more suitable candidate for non-intrusive evaluation of
reverberant speech and dereverberation algorithms, such as the
delay-and-sum beamformer.

E. Intelligibility Estimation Accuracy

Table III reports correlation values attained between the
three STI measures computed for Database 3 and the proposed
measure and three benchmark algorithms. The columns labeled
“ ,” 1–3, correspond to the STI measures computed
by the intrusive methods described in [14]–[16], respectively.
The “Reverberation” condition refers to the reverberant speech
signal captured by the third microphone in the microphone
array. As observed, the proposed SRMR measure attains higher
correlation with , thus corroborates findings reported in
[16] that is more reliable for reverberant speech. Focusing
on , the proposed measure is shown to improve over
PESQ, P.563, and ANIQUE+ by an average 33.5%, 92.4%,
and 89%, respectively. The high correlations reported by PESQ
corroborate those reported in [46]. The proposed measure,
however, allows for reliable intelligibility estimation without
needing a reference signal.

V. CONCLUSION

A speech to reverberation modulation energy ratio measure
is proposed for non-intrusive quality and intelligibility estima-
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TABLE III
CORRELATION BETWEEN SRMR, PESQ, P.563, OR ANIQUE+ AND STI VALUES COMPUTED BY THE INTRUSIVE METHODS OF DRULLMAN [14] ���� �,
PAYTON [15] ���� �, AND GOLDSWORTHY [16] ���� � USING DATABASE 3. COLUMN LABELED “� �” INDICATES THE CORRELATION IMPROVEMENT

OVER ��� AS GIVEN BY (7). AVERAGE CORRELATION IMPROVEMENT IS COMPUTED OVER THE FOUR DEGRADATION CONDITIONS

tion of reverberant and dereverberated speech. The performance
of the proposed measure is compared to that of three standard
measurement algorithms, namely, ITU-T PESQ, ITU-T P.563,
and ANSI ANIQUE+, using three databases. The first database
is used to explore the performance of the algorithms in esti-
mating multiple dimensions of perceived coloration. The second
and third databases are used to investigate quality measurement
and intelligibility estimation performance, respectively. Exper-
imental results show the proposed measure outperforming all
three standard algorithms on all three experiments. A Matlab
implementation of the proposed measure can be made available
for research purposes by contacting the first author.
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