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Abstract

In this study, modulation spectral features (MSFs) are proposed for the automatic recognition of human affective information from
speech. The features are extracted from an auditory-inspired long-term spectro-temporal representation. Obtained using an auditory filt-
erbank and a modulation filterbank for speech analysis, the representation captures both acoustic frequency and temporal modulation
frequency components, thereby conveying information that is important for human speech perception but missing from conventional
short-term spectral features. On an experiment assessing classification of discrete emotion categories, the MSFs show promising perfor-
mance in comparison with features that are based on mel-frequency cepstral coefficients and perceptual linear prediction coefficients, two
commonly used short-term spectral representations. The MSFs further render a substantial improvement in recognition performance
when used to augment prosodic features, which have been extensively used for emotion recognition. Using both types of features, an
overall recognition rate of 91.6% is obtained for classifying seven emotion categories. Moreover, in an experiment assessing recognition
of continuous emotions, the proposed features in combination with prosodic features attain estimation performance comparable to
human evaluation.
� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Affective computing, an active interdisciplinary research
field, is concerned with the automatic recognition, interpre-
tation, and synthesis of human emotions (Picard, 1997).
Within its areas of interest, speech emotion recognition
(SER) aims at recognizing the underlying emotional state
of a speaker from the speech signal. The paralinguistic
information conveyed by speech emotions has been found
to be useful in multiple ways in speech processing, espe-
cially serving as an important ingredient of “emotional
intelligence” of machines and contributing to human–
machine interaction (Cowie et al., 2001; Ververidis and
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Kotropoulos, 2006). Moreover, since a broad range of
emotions can be faithfully delivered in a telephone conver-
sation where only auditory information is exchanged, it
should be possible to build high-performance emotion rec-
ognition systems, using only speech signals as the input.
Such speech based systems can function either indepen-
dently or as modules of more sophisticated techniques that
combine other information sources such as facial expres-
sion and gesture (Gunes and Piccard, 2007).

Despite the substantial advances made in this area, SER
still faces a number of challenges, one of which is designing
effective features. Most acoustic features that have been
used for emotion recognition can be divided into two cate-
gories: prosodic and spectral. Prosodic features have been
shown to deliver important emotional cues of the speaker
(Cowie et al., 2001; Ververidis and Kotropoulos, 2006;
Busso et al., 2009). Even though there is no agreement
on the best features to use, prosodic features form the most
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Fig. 1. Flowchart for deriving the ST representation.

S. Wu et al. / Speech Communication 53 (2011) 768–785 769
commonly used feature type for SER, and have been
extensively studied by previous works (e.g. Cowie and
Douglas-Cowie, 1996; Abelin and Allwood, 2000; Cowie
et al., 2001; Mozziconacci, 2002; Scherer, 2003; Barra
et al., 2006; Schuller et al., 2007a; Busso et al., 2009). On
the other hand, spectral features (including cepstral fea-
tures) also play a significant role in SER as they convey
the frequency content of the speech signal, and provide
complementary information to prosodic features. Compar-
atively, however, limited research efforts have been put into
constructing more powerful spectral features for emotion
recognition. The spectral features are usually extracted
over a short frame duration (e.g. 20–30 ms), with longer
temporal information incorporated in the form of local
derivatives (e.g. Nwe et al., 2003; Batliner et al., 2006; Vla-
senko et al., 2007).

The limitations of short-term spectral features for
speech recognition, however, are considerable (Morgan
et al., 2005). Even with the inclusion of local derivatives,
the fundamental character of the features remains fairly
short-term. In short, conventional spectral features used
for speech recognition, such as the well-known mel-fre-
quency cepstral coefficients (MFCCs), convey the signal’s
short-term spectral properties only, omitting important
temporal behavior information. Such limitations are also
likely to hamper SER performance. On the other hand,
advances in neuroscience suggest the existence of spectro-
temporal (ST) receptive fields in mammalian auditory cor-
tex which can extend up to temporal spans of hundreds of
milliseconds and respond to modulations in the time-fre-
quency domain (Depireux et al., 2001; Shamma, 2001;
Chih et al., 2005). The importance of the modulation spec-
trum of speech is evident in a number of areas, including
auditory physiology, psychoacoustics, speech perception,
and signal analysis and synthesis, as summarized in (Atlas
and Shamma, 2003). These new insights further reveal the
shortcomings of short-term spectral features as they dis-
card the long-term temporal cues used by human listeners,
and highlight the need for more perceptually motivated
features.

In line with these findings, long-term modulation spec-
tral features (MSFs) are proposed in this paper for emotion
recognition. These features are based on frequency analysis
of the temporal envelopes (amplitude modulations) of mul-
tiple acoustic frequency bins, thus capturing both spectral
and temporal properties of the speech signal. The proposed
features are applied to two different SER tasks: (1) classifi-
cation of discrete emotions (e.g. joy, neutral) under the cat-
egorical framework which characterizes speech emotions
using categorical descriptors and (2) estimation of continu-

ous emotions (e.g. valence, activation) under the dimen-
sional framework which describes speech emotions as
points in an emotion space. In the past, classification tasks
have drawn dominant attention of the research community
(Cowie et al., 2001; Douglas-Cowie et al., 2003; Ververidis
and Kotropoulos, 2006; Shami and Verhelst, 2007). Recent
studies, however, have also focused on recognizing contin-
uous emotions (Grimm et al., 2007a,b; Wollmer et al.,
2008; Giannakopoulos et al., 2009).

To our knowledge, the only previous attempt at using
modulation spectral content for the purpose of emotion
recognition is reported in (Scherer et al., 2007), where the
modulation features are combined with several other fea-
ture types (e.g., loudness features) and approximately
70% recognition rate is achieved on the so-called Berlin
emotional speech database (Burkhardt et al., 2005). This
present study, which extends our previous work (Wu
et al., 2009), is different in several ways, namely (1) filter-
banks are employed for spectral decomposition; (2) the
proposed MSFs are designed by exploiting a long-term
ST representation of speech, and are shown to achieve con-
siderably better performance on the Berlin database rela-
tive to (Scherer et al., 2007); and (3) continuous emotion
estimation is also performed.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the algorithm for generating the long-term
ST representation of speech. Section 3 details the MSFs
proposed in this work, as well as short-term spectral fea-
tures and prosodic features extracted for comparison pur-
poses. Section 4 introduces the databases employed.
Experimental results are presented and discussed in Section
5, where both discrete emotion classification (Section 5.1)
and continuous emotion estimation (Section 5.2) are per-
formed. Finally, Section 6 gives concluding remarks.

2. ST representation of speech

The auditory-inspired spectro-temporal (ST) representa-
tion of speech is obtained via the steps depicted in Fig. 1.
The initial pre-processing module resamples the speech sig-
nal to 8 kHz and normalizes its active speech level to
�26 dBov using the P.56 speech voltmeter (Intl. Telecom.
Union, 1993). Since emotions can be reliably conveyed
through band-limited telephone speech, we consider the
8 kHz sampling rate adequate for SER. Speech frames
(without overlap) are labeled as active or inactive by the
G.729 voice activity detection (VAD) algorithm described
in (Intl. Telecom. Union, 1996) and only active speech
frames are retained. The preprocessed speech signal s(n)
is framed into long-term segments sk(n) by multiplying a
256 ms Hamming window with 64 ms frame shift, where
k denotes the frame index. Because the first subband filter
in the modulation filterbank (described below) analyzes
frequency content around 4 Hz, this relatively long tempo-
ral span is necessary for such low modulation frequencies.



Fig. 3. Example of Hilbert envelope: (a) a 125 ms output of a critical-band
filter centered at 650 Hz and (b) the corresponding Hilbert envelope.

Fig. 4. Magnitude response of a 5-band modulation filterbank with center
frequencies ranging from 4 to 64 Hz.
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It is well-known that the human auditory system can be
modeled as a series of over-lapping band-pass frequency
channels (Fletcher, 1940), namely auditory filters with crit-
ical bandwidths that increase with filter center frequencies.
The output signal of the ith critical-band filter at frame k is
given by:

skði; nÞ ¼ skðnÞ � hði; nÞ; ð1Þ
where h(i,n) denotes the impulse response of the ith chan-
nel, and * denotes convolution. Here, a critical-band
gammatone filterbank (Aertsen and Johannesma, 1980)
with N subband filters is employed. The implementation
in (Slaney, 1993) is used. The center frequencies of these fil-
ters (namely acoustic frequency, to distinguish from modu-

lation frequency of the modulation filterbank) are
proportional to their bandwidths, which in turn, are char-
acterized by the equivalent rectangular bandwidth (Glas-
berg and Moore, 1990):

ERBi ¼
F i

Qear

þ Bmin; ð2Þ

where Fi is the center frequency (in Hz) of the ith critical-
band filter, and Qear and Bmin are constants set to
9.26449 and 24.7, respectively. In our simulations, a gamm-
atone filterbank with 19 filters is used, where the first and
the last filters are centered at 125 Hz and 3.5 kHz, with
bandwidths of 38 and 400 Hz, respectively. The magnitude
response of the filterbank is depicted in Fig. 2.The
temporal envelope, or more specifically, the Hilbert enve-
lope Hkði; nÞ, is then computed from sk(i,n) as the magni-
tude of the complex analytic signal ŝkði; nÞ ¼ skði; nÞþ
jHfskði; nÞg, where Hf�g denotes the Hilbert transform.
Hence,

Hkði; nÞ ¼ ĵskði; nÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

kði; nÞ þH2fskði; nÞg
q

: ð3Þ

Fig. 3 shows an example of a bandpassed speech segment
(subplot a) and its Hilbert envelope (subplot b).

The auditory spectral decomposition modeled by the
critical-band filterbank, however, only comprises the first
stage of the signal transformation performed in the human
Fig. 2. Magnitude response of a 19-band auditory filterbank with center
frequencies ranging from 125 Hz to 3.5 kHz.
auditory system. The output of this early processing is
further interpreted by the auditory cortex to extract spec-
tro-temporal modulation patterns (Shamma, 2003; Chih
et al., 2005). An M-band modulation filterbank is
employed in addition to the gammatone filterbank to
model such functionality of the auditory cortex. By apply-
ing the modulation filterbank to each Hkði; nÞ; M outputs
Hkði; j; nÞ are generated where j denotes the jth modulation
filter, 1 6 j 6M. The filters in the modulation filterbank
Fig. 5. Ek(i, j) for one frame of a “neutral” speech file: low channel index
indicates low frequency.



Fig. 6. Average E(i, j) for seven emotion categories; for each emotion, Ek(i, j) is averaged over all frames from all speakers of that emotion; “AC” and
“MC” denote the acoustic and modulation frequency channels, respectively.

Fig. 7. Estimated pdfs of U3ð1Þ for three basic emotions.
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are second-order bandpass with quality factor set to 2, as
suggested in (Ewert and Dau, 2000). In this work we use
an M = 5 filterbank whose filter center frequencies are
equally spaced on logarithm scale from 4 to 64 Hz. The filt-
erbank was shown in preliminary experiments to strike a
good balance between performance and model complexity.
The magnitude response of the modulation filterbank is
depicted in Fig. 4.

Lastly, the ST representation Ek(i, j) of the kth frame is
obtained by measuring the energy of Hkði; j; nÞ, given by:

Ekði; jÞ ¼
XL

n¼1

jHkði; j; nÞj2; ð4Þ

where 1 6 k 6 T with L and T representing the number of
samples in one frame and the total number of frames,
respectively. For a fixed j = j*, Ek(i, j*) relates the auditory
spectral samples of modulation channel j* after critical-
band grouping. An example of Ek(i, j) is illustrated in
Fig. 5. By incorporating the auditory filterbank and the
modulation filterbank, a richer two-dimensional frequency
representation is produced and allows for analysis of mod-
ulation frequency content across different acoustic fre-
quency channels.

Fig. 6 shows the ST representation E(i, j) for the seven
emotions in the Berlin database (cf. Section 4.1), where
every E(i, j) shown is the average over all the frames and
speakers available in the database for an emotion. As illus-
trated in the figure, the average ST energy distribution over
the joint acoustic-modulation frequency plane is similar for
some emotions (e.g. anger vs. joy), suggesting they could
become confusion pairs, while very distinct for some others
(e.g. anger vs. sadness), suggesting they could be well dis-
criminated from each other. As reasonably expected, the
less expressive emotions such as boredom and sadness have
significantly more low acoustic frequency energy than
anger and joy (see also Fig. 7), corroborating findings in
previous studies (Cowie et al., 2001; Scherer, 2003). The
ST distribution for neutral peaks at 4 Hz modulation fre-
quency, matching the nominal syllabic rate (Kanederaa
et al., 1999). The peak shifts to a higher modulation fre-
quency for anger, joy, and fear, suggesting a faster speaking
rate for these emotions. Less expressive emotions such as
boredom and sadness exhibit more prominently lowpass
modulation spectral shapes, suggestive of lower speaking
rates. Interestingly, sadness also shows increased energy
for the last two modulation channels (centered at 32 and
64 Hz, respectively) relative to anger and joy (not evident
from the plots, as the dominant energy is concentrated in
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lower modulation channels and the absolute amount of
energy at higher modulation frequencies is small). This
might be due to the fact that sad speech is more breathy
(Ishi et al., 2010), a phenomenon somewhat analogous to
reverberant speech, whose effectively unvoiced excitation
engenders more high modulation frequency energy (Falk
and Chan, 2010b).

3. Feature extraction

In this section, we detail the proposed MSFs extracted
from the ST representation. Short-term spectral features
and prosodic features considered in our experiments are
also described.

3.1. Modulation spectral features

Two types of MSFs are calculated from the ST represen-
tation, by means of spectral measures and linear prediction
parameters. For each frame k, the ST representation Ek(i, j)
is scaled to unit energy before further computation, i.e.P

i;jEkði; jÞ ¼ 1. Six spectral measures U1–U6 are then cal-
culated on a per-frame basis. For frame k, U1,k(j) is defined
as the mean of the energy samples belonging to the jth
modulation channel (1 6 j 6 5):

U1;kðjÞ ¼
PN

i¼1Ekði; jÞ
N

: ð5Þ

Parameter U1 characterizes the energy distribution of
speech along the modulation frequency. The second spec-
tral measure is the spectral flatness which is defined as the
ratio of the geometric mean of a spectral energy measure
to the arithmetic mean. In our calculation, Ek(i, j) is used
as the spectral energy measure at frame k for modulation
band j and U2 is thus defined as:

U2;kðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQN
i¼1Ekði; jÞN

q

U1;kðjÞ
: ð6Þ

A spectral flatness value close to 1 indicates a flat spectrum,
while a value close to 0 suggests a spectrum with widely dif-
ferent spectral amplitudes. The third measure employed is
the spectral centroid which provides a measure of the “cen-
ter of mass” of the spectrum in each modulation channel.
Parameter U3 for the jth modulation channel is computed
as:

U3;kðjÞ ¼
PN

i¼1f ðiÞEkði; jÞPN
i¼1Ekði; jÞ

: ð7Þ

Two types of frequency measure f(i) have been experi-
mented: (1) f(i) being the center frequency (in Hz) of the
ith critical-band filter of the auditory filterbank and (2)
f(i) being the index of the ith criticalband filter, i.e., f(i) =
i. No remarkable difference in performance is observed be-
tween the two measures, thus the latter is chosen for sim-
plicity. Moreover, given the observation that adjacent
modulation channels usually have considerable correlation,
the spectral flatness and the centroid parameters of adja-
cent modulation channels also exhibit high correlation. In
order to alleviate such information redundancy, U2,k(j)
and U3,k(j) are only computed for j 2 {1,3,5}.

Among the three aforementioned spectral measures, U3

is observed to be particularly useful. Fig. 7 illustrates a rep-
resentative example, where U3ð1Þ is the average of U3,k(1)
computed over each utterance in the Berlin database
belonging to three basic emotions: anger, neutral, and sad-

ness, and the probability density function (PDF) of the
averages for each emotion is estimated as a unimodal
Gaussian. Considering neutral as a reference point, anger

and sadness display an upward and downward shift of
spectral centroid in acoustic frequency, respectively. This
result is consistent with the ST patterns of these three emo-
tions displayed in Fig. 6. Even though the PDFs of sadness

and neutral overlap to some extent, good separation is
shown for anger vs. neutral, and almost perfect discrimina-
tion is achieved between anger and sadness, using only one
feature.

In addition to parameters that measure the spectral
behavior of each individual modulation channel, additional
spectral measures that measure the relationship of different
modulation channels are computed. First, the 19 acoustic
channels are grouped into four divisions: 1–4, 5–10, 11–
15, and 16–19, namely Dl (1 6 l 6 4), which roughly corre-
spond to frequency regions of <300 , 300–1000, 1000–2000,
and >2000 Hz, respectively, and have been shown in pilot
experiment to achieve a good compromise between the
amount of fine details extracted from data and perfor-
mance. Channels in the same division are summed:
Ekðl; jÞ ¼

P
i2Dl

Ekði; jÞ. Then the modulation spectral cen-

troid (U4) is calculated in a manner similar to Eq. 7:

U4;kðlÞ ¼
PM

j¼1jEkðl; jÞPM
j¼1Ekðl; jÞ

: ð8Þ

Unlike U3,k(j) which measures the spectral centroid in the
acoustic frequency domain for modulation band j, U4,k(l)
calculates the centroid in the modulation frequency domain
for Dl. The last two spectral measures U5,k(l) and U6,k(l) are
the linear regression coefficient (slope) and the correspond-
ing regression error (root mean squared error, RMSE)
obtained by fitting a first-degree polynomial to Ekðl; jÞ;
j ¼ 1; . . . ;M , in a least squares sense. By calculating U4–
U6, information is extracted about the rate of change of
the selected acoustic frequency regions, thereby compactly
capturing the temporal dynamic cues. In total, 23 features
are obtained from the ST representation per frame by
applying the six spectral measures.

Besides taking the spectral measures described above,
linear predication (LP) analysis is further applied to
selected modulation channels j where j 2 {1,3,5}, to extract
the second set of MSFs from Ek(i, j). This selection of
modulation channels is also for the purpose of reducing
information redundancy caused by high correlation
between adjacent channels. The autocorrelation method



Table 1
List of prosodic features.

Pitch, intensity, delta-pitch, delta-intensity

Mean, std. dev., skewness, kurtosis, shimmer, maximum, minimum,
median, quartiles, range, differences between quartiles, linear & quadratic
regression coefficients, regression error (RMSE)

Speaking rate

Mean and std. dev. of syllable durations, ratio between the duration of
voiced and unvoiced speech

Others

Zero-crossing rate (ZCR), Teager energy operator (TEO)
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for autoregressive (AR) modeling is used here. In order
to suppress local details while preserving the broad struc-
ture beneficial to recognition, a 5th-order all-pole model
is used to approximate the spectral samples. The compu-
tational cost of this AR modeling is negligible due to the
low LP order and the small number of spectral samples
per modulation channel (19 here). The LP coefficients
obtained are further transformed into cepstral coefficients
(LPCCs), and denoted as Ck(n, j) (0 6 n 6 5). The LPCCs
have been shown to be generally more robust and reliable
for speech recognition than the direct LP coefficients
(Rabiner and Juang, 1993). We have tested both types
and indeed the LPCCs yield better recognition perfor-
mance in our application. Together with the 23 aforemen-
tioned features, a total of 41 MSFs are calculated frame-
by-frame.

Although MSFs are extracted at a frame-level (FL),
the common approach in current SER literature com-
putes features at the utterance-level (UL) (e.g. Grimm
et al., 2007a,b; Shami and Verhelst, 2007; Schuller
et al., 2007b; Clavel et al., 2008; Lugger and Yang,
2008; Busso et al., 2009; Giannakopoulos et al., 2009;
Sun and Torres, 2009), by applying descriptive functions
(typically statistical) to the trajectories of FL features
(and often also their derivatives to convey local dynamic
information). The UL features capture the global proper-
ties and behaviors of their FL counterparts. It is desirable
for the UL features to capture the supra-segmental char-
acteristics of emotional speech that can be attributed to
emotions rather than specific spoken-content and to effec-
tively avoid problems such as spoken-content over-model-
ing (Vlasenko et al., 2007). Following the UL approach,
two basic statistics: mean and standard deviation (std.
dev.) of the FL MSFs are calculated in this work, pro-
ducing 82 UL MSFs.

3.2. Short-term spectral features

3.2.1. MFCC features
The mel-frequency cepstral coefficients (MFCCs), first

introduced in (Davis and Mermelstein, 1980) and success-
fully applied to automatic speech recognition, are popular
short-term spectral features used for emotion recognition.
They are extracted here for comparison with the proposed
long-term MSFs. The speech signal is first filtered by a
high-pass filter with a pre-emphasis coefficient of 0.97,
and the first 13 MFCCs (including the zeroth order log-
energy coefficient) are extracted from 25 ms Hamming-win-
dowed speech frames every 10 ms. As a common practice,
the delta and double-delta MFCCs describing local dynam-
ics are calculated as well to form a 39-dimensional FL fea-
ture vector. The most frequently used UL MFCC features
for emotion recognition include mean and std. dev. (or var-
iance) of the first 13 MFCCs and their deltas (e.g. Grimm
et al., 2007a,b; Schuller et al., 2007a; Vlasenko et al., 2007;
Clavel et al., 2008; Lugger and Yang, 2008). In this work,
we compute mean, std. dev., and 3rd–5th central moments
of the first 13 MFCCs, as well as their deltas and double-
deltas, giving 195 MFCC features in total. This MFCC
feature set is an extension to the one used in (Grimm
et al., 2007a, 2008), by further considering the delta
coefficients.
3.2.2. PLP features

In addition to MFCCs, perceptual linear predictive
(PLP) coefficients (Hermansky, 1990) are also extracted
from speech, serving as an alternative choice of short-term
spectral features for comparison. PLP analysis approxi-
mates the auditory spectrum of speech by an all-pole model
that is more consistent with human hearing than conven-
tional linear predictive analysis. A 5th-order model is
employed as suggested in (Hermansky, 1990). The PLP
coefficients are transformed to cepstral coefficients c(n)
(0 6 n 6 5). The delta and double-delta coefficients are also
considered. The aforementioned statistical parameters as
used for MFCC are calculated for the PLP coefficients, giv-
ing 90 candidate PLP features.
3.3. Prosodic features

Prosodic features have been, among numerous acoustic
features employed for SER, the most widely used feature
type as mentioned in Section 1. Hence they are used here
as a benchmark, and more importantly, to verify whether
the MSFs can serve as useful additions to the extensively
used prosodic features. The most commonly used prosodic
features are based on pitch, intensity, and speaking rate.
The features are estimated on a short-term frame basis,
and their contours are used to compute UL features. The
statistics of these trajectories are shown to be of fundamen-
tal importance for conveying emotional cues (Cowie et al.,
2001; Nwe et al., 2003; Ververidis and Kotropoulos, 2006;
Busso et al., 2009).

In total, 75 prosodic features are extracted as listed in
Table 1. Note that a complete coverage of prosodic fea-
tures is infeasible. Consequently, the features calculated
here are by no means exhaustive, but serve as a representa-
tive sampling of the essential prosodic feature space. Pitch
is computed for voiced speech using the pitch tracking
algorithm in (Talkin, 1995), and intensity is measured for



Fig. 8. Distribution of the emotion primitives in the overall VAM
database (Grimm et al., 2008).
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active speech in dB. Note that shimmer is computed for the
trajectories of pitch and intensity only, not their deltas. For
a sequence xn of length Nx, shimmer in this work is calcu-
lated as:

S ¼
1

Nx�1

PNx�1
n¼1 jxn � xnþ1j

1
Nx

PNx
n¼1xn

: ð9Þ

Features related to speaking rate are also extracted using
syllabic and voicing information as shown in the table.
Moreover, the zero-crossing rate (ZCR) and the Teager en-
ergy operator (TEO) (Kaiser, 1990) of the speech signal are
calculated as well, though they do not directly relate to
prosody. TEO extracts useful information about the non-
linear airflow structure of speech production (Zhou et al.,
2001). The TEO for a discrete-time signal xn is defined as:

TEOðxnÞ ¼ x2
n � xnþ1xn�1: ð10Þ

The mean Teager energy of the speech signal is used as a
feature, and is found to be an effective feature in our exper-
iments (cf. Section 5.1.3).

4. Emotional speech data

4.1. Berlin emotional speech database

The Berlin emotional speech database (Burkhardt et al.,
2005) is used for experiments classifying discrete emotions.
This publicly available database is one of the most popular
databases used for emotion recognition, thus facilitating
comparisons with other works. Ten actors (5m/5f) each
uttered 10 everyday sentences (five short and five long, typ-
ically between 1.5 and 4 s) in German, sentences that can
be interpreted in all of seven emotions acted. The raw data-
base (prior to screening) has approximately 800 sentences
and is further evaluated by a subjective perception test with
20 listeners. Utterances scoring higher than 80% emotion
recognition rate and considered natural by more than
60% listeners are included in the final database. The num-
bers of speech files for the seven emotion categories in the
screened Berlin database are: anger (127), boredom (81),
disgust (46), fear (69), joy (71), neutral (79) and sadness

(62).

4.2. Vera am Mittag (VAM) database

The VAM database (Grimm et al., 2008) is a relatively
new database containing spontaneous emotions, created
within a three-dimensional emotion space framework. It
was recorded from a German TV talk-show “Vera am Mit-
tag”. There are three individual modules in the complete
VAM database: VAM-Audio, VAM-Video, and VAM-
Faces, containing audio signal only, audio + visual signals,
and face images, respectively. In this work, only the VAM-
Audio module is employed and hereinafter it is simply
referred to as the VAM database. The recordings are man-
ually segmented at the utterance level. Emotions in the
database are described in an emotion space consisting of
three emotion primitives: valence (or evaluation, ranging
from negative to positive), activation (with levels from
low to high) and dominance (the apparent strength of the
speaker, i.e. ability to handle a situation) (Grimm et al.,
2007a). The continuous emotion values on each primitive
scale are obtained through subjective assessment. The
VAM database contains two parts: VAM I with 478 utter-
ances from 19 speakers (4m/15f) and 17 human evaluators
assessing the primitives, and VAM II with 469 utterances
from 28 speakers (7m/21f) and six evaluators. The distribu-
tions of the three primitives in the VAM database (I + II)
are shown in Fig. 8 (Grimm et al., 2008). It can be seen
from the histograms that compared to activation and dom-

inance, the distribution of valence is less balanced. The
database contains mostly neutral and negative emotions,
due to the topics discussed in the talk-show (Grimm
et al., 2008).
5. Experiments

In this section, results of the experimental evaluation are
presented. Support vector machines (SVMs) (Vapnik,
1995) are used for recognition of both discrete and contin-
uous emotions. While support vector classification finds the
separation hyperplane that maximizes the margin between
two classes, support vector regression determines the
regression hyperplane that approximates most data points
with � precision. The SVM implementation in (Chang and
Lin, 2009) is adopted with the radial basis function (RBF)
kernel employed. The design parameters of SVM are
selected using training data via a grid search on a base-2
logarithmic scale. In general, the RBF kernel can be a good
choice as justified in (Hsu et al., 2007) because: (1) it can
model the non-linear relation between attributes and target
values well; (2) the linear kernel is a special case of RBF
kernel; (3) it has less hyperparameters than the polynomial
kernel; and (4) it has less numerical difficulties compared to
polynomial and sigmoid kernels. Features from training
data are linearly scaled to [�1,1] before applying SVM,
with features from test data scaled using the trained linear
mapping function as suggested in (Hsu et al., 2007).
5.1. Experiment I: discrete emotion classification

All results achieved on the Berlin database are produced
using 10-fold cross-validation. The data partitioning is



Fig. 9. Average FDR curves for the proposed, MFCC and PLP features
(Berlin).
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based on random sampling of files from a pool wherein all
speakers are mixed; hence the cross-validation is not
speaker-independent. Moreover, samples in each class have
been randomly divided into 10 disjoint subsets approxi-
mately equal in size. Each validation trial takes nine sub-
sets from every class for training, with the remaining
subset kept unseen from the training phase and used for
testing only.

A two-stage feature selection scheme is employed and is
described in Section 5.1.1. The proposed MSFs are initially
compared to MFCC and PLP features in Section 5.1.2,
with their contribution as supplementary features to pro-
sodic features investigated in Section 5.1.3. The effect of
taking a speaker normalization (SN) step to pre-process
the data prior to data partitioning for cross-validation is
also investigated, where features are first mean and vari-
ance normalized within the scope of each speaker to com-
pensate for speaker variations, as performed in (Vlasenko
et al., 2007). Let fu,v(n) (1 6 n 6 Nu,v) stand for the uth fea-
ture from speaker v with Nu,v denoting its sample size which
in our case, is the number of all available samples in the
database from that speaker. Then the new feature f 0u;vðnÞ
processed by SN is given by:

f 0u;vðnÞ ¼
fu;vðnÞ � fu;vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nu;v�1

PNu;v
m¼1ðfu;vðmÞ � fu;vÞ2

q ; ð11Þ

where fu;v ¼ 1
Nu;v

PNu;v

n¼1fu;vðnÞ. Since SN requires the system
to know the speaker in advance, it might not be realistic
in many applications. Nevertheless its results could still
be interesting to see, hence included in following
experiments.

5.1.1. Feature selection

Using all the features for machine learning might deteri-
orate recognition performance due to the curse of dimen-
sionality (Bishop, 2006). To this end, a two-stage feature
selection scheme is proposed to reduce the number of fea-
tures. The first stage calculates the Fisher discriminant
ratio (FDR) to rank each feature individually, which can
quickly eliminate irrelevant (“noisy”) features. The normal-
ized multi-class FDR for the uth feature is defined as:

FDRðuÞ ¼ 2

CðC � 1Þ
X

c1

X
c2

ðlc1;u � lc2;uÞ
2

r2
c1;u
þ r2

c2;u

; ð12Þ

with 1 6 c1 < c2 6 C, where lc1;u and r2
c1;u

are mean and
variance of the uth feature for the c1th class, and C is the
total number of classes. This FDR measure is normalized
by the number of binary comparisons made between two
classes. The measure favors features with well-separated
means across classes and small within-class variances. Fea-
tures of little discrimination power can then be removed by
FDR thresholding. Here the threshold is empirically set to
0.15 as further increasing the threshold results in no
improvement of performance, which reduces roughly 10%
of the proposed features and 15% of prosodic features,
but up to 50% of MFCC features and 40% of PLP features.
Thus the FDR step is important for the short-term spectral
feature pools, which would otherwise be rather noisy for
feature mining.

In the second stage, two techniques are experimented to
obtain good features from the pre-screened feature pools
for SVM classification. The first technique is sequential
forward feature selection (SFS) (Kittler, 1978), which
iteratively augments the selected feature subset and consid-
ers the combined effect of features and SVM classifier
during the evaluation process. The SFS algorithm also
helps to visualize changes of recognition accuracy as the
selected feature subset evolves, and thus provides a
straightforward way to compare performance of different
feature combinations.

The second technique is the well-known multi-class lin-
ear discriminant analysis (LDA) (Bishop, 2006). It finds the
transformation optimizing the Fisher objective, that in turn
maximizes the between-class distance and minimizes the
within-class distance simultaneously. LDA can offer a dras-
tic reduction in feature dimensionality for high-dimen-
sional data and effectively alleviates the curse of
dimensionality, hence particularly useful in practice if the
size of the training data is limited relative to the number
of features. The main limitation of LDA is that it cannot
be applied to regression problems. LDA solves the general-
ized eigen-problem:

Sbw ¼ kSww; ð13Þ
where Sb and Sw are the between-class and within-class
scatter matrices, respectively. The eigenvectors w are used
to form the columns of the transformation matrix W which
transforms data point x to y = WTx. The components of y

constitute the LDA-transformed features. Since the maxi-
mum rank of Sb for a C-class problem is C � 1, the maxi-
mum number of LDA features is also C � 1. For our
seven-class case, all six LDA-transformed features are used
to design SVM classifiers.



Table 2
Recognition results for MSF, MFCC, and PLP features (Berlin); boldface indicates the best performance in each test.

Test Feature Method SN Recognition rate (%) Average

Anger Boredom Disgust Fear Joy Neutral Sadness

#1 MSF (31/74) SFS No 92.1 86.4 73.9 62.3 49.3 83.5 98.4 79.6

MFCC (49/92) 91.3 80.3 67.4 65.2 50.7 79.8 85.5 76.5
PLP (48/51) 89.8 79.0 50.0 58.0 43.7 72.2 83.9 71.2

#2 MSF LDA No 91.3 86.4 78.3 71.0 60.6 83.5 88.7 81.3

MFCC 83.5 85.2 78.3 76.8 53.5 79.8 83.9 77.9
PLP 88.2 74.1 56.5 55.1 49.3 77.2 80.7 71.4

#3 MSF (41/73) SFS Yes 89.8 88.9 67.4 81.2 59.2 84.8 98.4 82.8

MFCC (37/96) 88.2 82.7 71.7 76.8 54.9 76.0 90.3 78.5
PLP (26/51) 90.6 72.8 56.5 66.7 46.5 81.0 95.2 75.1

#4 MSF LDA Yes 90.6 87.7 76.1 91.3 70.4 84.8 91.9 85.6

MFCC 85.0 79.0 78.3 81.2 54.9 79.8 88.7 78.7
PLP 90.6 80.3 58.7 72.5 56.3 81.0 88.7 77.8

Fig. 10. Recognition results for MSF, MFCC, and PLP features selected
by SFS (Berlin).
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5.1.2. Comparison with short-term spectral features

The proposed features are first compared to two short-
term spectral feature types: MFCC and PLP features, by
means of FDR scores before applied to SVMs. The fea-
tures are ranked by their FDR values (calculated using
all instances in the Berlin database before data partition-
ing). Curves depicting the FDR values averaged over the
top Nfdr FDR-ranked features are shown in Fig. 9 as a
function of Nfdr. These average FDR curves can be viewed
as rough indicators of discrimination power of the three
feature types independent of a specific classifier. As
depicted in the figure, the MSFs consistently exhibit con-
siderably better discrimination power than the other two
spectral feature types, whose FDR curves are relatively
close. Speaker normalization is shown to be beneficial, as
it boosts all the FDR curves. However, selecting features
based solely on FDR can be hazardous, as it only evaluates
features individually. Effects such as feature correlation
and classifier properties have not been taken into account.
Therefore, a subsequent step to find better feature combi-
nations is necessary, as performed by the second stage of
our feature selection scheme.

The numeric results of applying SFS and LDA tech-
niques to the FDR screened feature pools are detailed in
Table 2 with SVMs employed for classification and the
results averaged over the 10 cross-validation trials. The
average recognition rate is measured as the number of sam-
ples from all emotions correctly recognized divided by the
total number of samples. For SFS, the results shown in
Table 2 are for the number of features that yields the best
average performance. This best-performing number of fea-
tures selected by SFS and the feature pool size (after FDR
screening) are given by “X” and “Y”, respectively, in the
format of “X/Y” as shown in the table. Because the pre-
screened PLP feature pool consists of 51 features only,
SFS is terminated at 50 features for all feature types so
that, for fair comparison, the maximum number of features
that can be selected from each feature type is the same. For
LDA, all the six transformed features are used as men-
tioned in Section 5.1.1.
As shown in Table 2, the proposed MSFs achieve the
best accuracy in most emotions and in overall perfor-
mance, reaching up to 85.6% average recognition rate
(using LDA with SN). Applying SN improves both SFS
and LDA performance for all features. It is also interesting
to see that in these tests, using six LDA transformed fea-
tures delivers even higher accuracy than using dozens of
SFS features, indicating that the effective reduction of fea-
ture dimensionality offered by LDA indeed contributes to
recognition performance. The average recognition rate
for the three feature types are further depicted in Fig. 10,
as a function of the number of features selected by SFS.
It is clear from Fig. 10 that the MSFs consistently outper-
form MFCC and PLP features, irrespective of SN, though
performing SN boosts the accuracy curves more notably
for short-term spectral features than for the MSFs. More-
over, as indicated by the figure, MFCC features appear to
be more suitable for emotion recognition relative to PLP
features, despite FDR results suggesting the two feature
types to be comparable. Such finding resonates with the
aforementioned fact that additional procedures are needed
to explore feature combinations after FDR pre-screening.



Table 3
Top 10 features for prosodic, proposed, and combined features as ranked
by AFR (Berlin).

Rank Feature AFR Rank Feature AFR

Prosodic features

1 TEO 2.4 6 Q3 � Q2 of pitch 8.4
2 Mean syllable

duration
3.3 7 Kurtosis of

intensity
8.6

2 Q3 � Q2 of delta-
pitch

3.3 8 Q3 of delta-pitch 9.1

4 Slope of pitch 7.3 9 Minimum of
intensity

9.8

5 Q1 of delta-pitch 8.3 9 ZCR 9.8

Proposed features

1 Mean of U1,k(3) 2.3 6 Mean of U6,k(2) 7.0
2 Mean of Ck(4,5) 5.0 7 Mean of U1,k(2) 7.1
3 Mean of U3,k(1) 5.6 8 Mean of U4,k(4) 7.7
4 Mean of U3,k(3) 6.0 9 Mean of U3,k(5) 8.7
5 Mean of U5,k(2) 6.4 10 Mean of Ck(1,5) 9.1

Combined features

1 Mean of U1,k(3) 3.0 6 Mean of U6,k(2) 7.8
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5.1.3. Comparison with prosodic features

Due to the widespread use of prosodic features, it is
important to study the contribution of the proposed MSFs
as complementary features. Comparisons are hence per-
formed using: (1) prosodic features only and (2) combined
prosodic and proposed features. Although the prosodic
features extracted in our study do not exhaust all possibil-
ities, they do cover important aspects of prosodic informa-
tion. Consequently, recognition results for this typical
prosodic feature set can serve as a rule of thumb for the
underlying extensive prosodic feature space.

The average FDR curves of the two feature types and
their combinations are shown in Fig. 11, where the label
“PROS” stands for prosodic features. As can be seen from
the figure, the proposed features outperform prosodic fea-
tures in terms of FDR scores, and the discrimination power
of the prosodic feature pool can be substantially enhanced
after the inclusion of MSFs. Both feature types benefit con-
siderably from SN. The recognition rate trajectories using
Fig. 11. Average FDR curves for prosodic features, MSFs, and their
combination (Berlin).

Fig. 12. Comparison between prosodic features and their combination
with MSFs (Berlin).

2 Mean syllable
duration

4.5 7 Q1 of pitch 9.0

3 Mean of U3,k(3) 6.0 8 Q1 of delta-pitch 9.1
4 Mean of U3,k(1) 6.1 9 Slope of pitch 9.2
5 Mean of U5,k(2) 7.2 10 Mean of Ck(4,5) 9.4
features selected by SFS are illustrated in Fig. 12, where
the contribution of the MSFs is evident.

The top features (no SN) selected by SFS from prosodic
features, MSFs, and their combination are presented in
Table 3, by means of average feature rank (AFR). Denote
the candidate feature pool as F. The AFR of the uth feature
fu 2 F given R cross-validation trials is calculated as:

AFRðfuÞ ¼
1

R

XR

r¼1

rank of f u in the rth trial: ð14Þ

If fu is not selected in a trial, its rank is replaced by a
penalty value P. The AFR tables here are produced by
Fig. 13. Comparison between different combinations of spectral and
prosodic features (Berlin).
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selecting the top 10 features in each trial with the penalty
value P set to 11. Features with small AFR values, such
as TEO and U1,k(3), are consistently top ranked across
the cross-validation trials. In practice, such results can be
used to pick features when forming a final feature set to
train the classifier. We also compiled AFR tables for fea-
tures with SN (not shown). It is observed that nearly half
of the features in Table 3 appear in the SN case as well,
though with different ranks, and several features remain
top ranked regardless of SN, such as TEO, mean syllable
duration, U1,k(3) and U3,k(1).

The short-term spectral features are also considered for
comparison. SFS results with different combinations of
spectral feature type and prosodic features are given in
Fig. 14. Average recognition performance of Nbest for different combina-
tions of spectral and prosodic features (Berlin).

Table 4
Recognition results for prosodic and combined features (Berlin); boldface ind

Test Feature Method SN Recognition rate

Anger Bored

#1 PROS (50/65) SFS No 89.8 87.7
PROS + MSF (48/139) 94.5 88.9

PROS + MFCC (38/157) 93.7 88.9

PROS + PLP (45/116) 90.6 84.0
# % 46.1 9.8

#2 PROS LDA No 87.4 82.7
PROS + MSF 90.6 92.6

PROS + MFCC 84.3 87.7
PROS + PLP 87.4 90.1
# % 25.4 57.2

#3 PROS (41/64) SFS Yes 92.9 91.4
PROS + MSF (48/137) 94.5 87.7
PROS + MFCC (44/160) 93.7 92.6

PROS + PLP (44/115) 96.1 92.6

# % 22.5 �43.0

#4 PROS LDA Yes 89.8 85.2
PROS + MSF 93.7 96.3

PROS + MFCC 88.2 87.7
PROS + PLP 85.8 87.7
# % 38.2 75.0
Fig. 13, where the proposed features achieve the highest
recognition rate, either with SN (MSF: 87.7%, MFCC:
86.5%, PLP: 87.3%) or without SN (MSF: 85.4%, MFCC:
84.1%, PLP: 81.9%). Although the best performance of
different feature combinations might seem close, the advan-
tage of the proposed features is most notable in Fig. 14.
The label Nbest denotes that the Nbest (1 6 Nbest 6 50) high-
est recognition rates (among the 50 recognition rates
obtained by selecting 1–50 features using SFS) are chosen,
with their average being calculated and depicted in the fig-
ure. As shown in Fig. 14, the MSFs always furnish the
highest average recognition rate relative to MFCC and
PLP features, irrespective of SN. But among the three spec-
tral feature types evaluated by SFS, PLP features (com-
bined with prosodic features) turn out to receive the
largest performance gain from SN.

Table 4 details the results achieved by the combined fea-
tures, with recognition rate shown for each emotion. LDA
results are included as well. The row labeled “# %” indi-
cates the percentage reduction of error rate obtained by
adding the MSFs to prosodic features, which is calculated
as:

# % ¼ RRPROSþMSF �RRPROS

1�RRPROS

� 100%; ð15Þ
where “RR” represents recognition rate. Similar to the case
where spectral features are evaluated individually, the
MSFs achieve the highest overall accuracy when combined
with prosodic features, and up to 91.6% recognition rate
can be obtained using LDA with SN. Applying LDA with
SN also gives the best recognition performance for
icates the best performance in each test.

(%) Average

om Disgust Fear Joy Neutral Sadness

73.9 84.1 59.2 79.8 83.9 81.1
76.1 84.1 57.8 89.9 96.8 85.4

71.7 85.5 56.3 89.9 90.3 84.1
71.7 78.3 59.2 89.9 88.7 81.9
8.4 0.0 �3.4 50.0 80.1 22.8

78.3 79.7 49.3 82.3 83.9 78.7
87.0 82.6 62.0 87.3 88.7 85.0

93.5 79.7 62.0 88.6 91.9 83.6
89.1 68.1 57.8 84.8 88.7 81.3
40.1 14.3 25.1 28.3 29.8 29.6

78.3 81.2 56.3 87.3 90.3 83.9
82.6 84.1 63.4 96.2 98.4 87.7

82.6 84.1 66.2 84.8 95.2 86.5
78.3 82.6 63.4 92.4 95.2 87.3
19.8 15.4 16.3 70.1 83.5 23.6

80.4 87.0 62.0 93.7 93.6 85.2
91.3 89.9 73.2 94.9 100 91.6

89.1 84.1 69.0 89.9 91.9 85.8
78.3 84.1 67.6 93.7 91.9 84.7
55.6 22.3 29.5 19.0 100 43.2



Table 5
Confusion matrix for using only prosodic features (Berlin).

Emotion Anger Boredom Disgust Fear Joy Neutral Sadness Rate (%)

Anger 114 0 1 3 8 1 0 89.8
Boredom 0 69 1 0 0 8 3 85.2
Disgust 0 1 37 2 0 5 1 80.4
Fear 4 0 0 60 3 2 0 87.0
Joy 19 0 1 2 44 5 0 62.0
Neutral 1 2 1 0 0 74 1 93.7
Sadness 0 3 0 0 0 1 58 93.6

Precision (%) 82.6 92.0 90.2 89.6 80.0 77.1 92.1

Table 6
Confusion matrix for using prosodic and proposed features (Berlin).

Emotion Anger Boredom Disgust Fear Joy Neutral Sadness Rate (%)

Anger 119 0 1 1 6 0 0 93.7
Boredom 0 78 0 0 0 3 0 96.3
Disgust 0 0 42 1 1 2 0 91.3
Fear 2 0 0 62 3 2 0 89.9
Joy 12 0 1 3 52 3 0 73.2
Neutral 0 3 1 0 0 75 0 94.9
Sadness 0 0 0 0 0 0 62 100

Precision (%) 89.5 96.3 93.3 92.5 83.9 88.2 100

Table 7
Recognition results for LOSO cross-validation (Berlin).

Feature Recognition rate (%)

SFS LDA

10-fold LOSO 10-fold LOSO

MSF 79.6 74.0 81.3 71.8
MFCC 76.5 65.6 77.9 66.0
PLP 71.2 63.2 71.4 65.0

MSF (SN) 82.8 78.1 85.6 79.1
MFCC (SN) 78.5 71.8 78.7 72.3
PLP (SN) 75.1 72.3 77.8 72.5

PROS 81.1 75.0 78.7 71.2
PROS + MSF 85.4 78.1 85.0 76.3
PROS + MFCC 84.1 75.1 83.6 75.5
PROS + PLP 81.9 75.3 81.3 72.1

PROS (SN) 83.9 83.0 85.2 80.2
PROS + MSF (SN) 87.7 83.2 91.6 80.9
PROS + MFCC (SN) 86.5 85.8 85.8 82.4
PROS + PLP (SN) 87.3 84.3 84.7 78.7
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prosodic features (85.2%). For MFCC and PLP features,
however, superior results are observed for SFS with SN.

Two confusion matrices are shown in Tables 5 and 6
(left-most column being the true emotions), for the best
recognition performance achieved by prosodic features
alone and combined prosodic and proposed features
(LDA + SN), respectively. The rate column lists per class
recognition rates, and precision for a class is the number
of samples correctly classified divided by the total number
of samples classified to the class. We can see from the con-
fusion matrices that adding MSFs contributes to improv-
ing the recognition and precision rates of all emotion
categories. It is also shown that most emotions can be cor-
rectly recognized with above 89% accuracy, with the excep-
tion of joy, which forms the most notable confusion pair
with anger, though they are of opposite valence in the acti-
vation–valence emotion space (Cowie et al., 2001). This
might be due to the fact that activation is more easily rec-
ognized by machine than valence, as indicated by the
regression results for the emotion primitives on the VAM
database presented in Section 5.2.

As aforementioned, the cross-validation scheme used so
far is not entirely speaker-independent. We further investi-
gate the effect of speaker dependency for SER by doing
“leave-one-speaker-out” (LOSO) cross-validation, wherein
the training set does not contain a single instance of the
speaker in the test set. LOSO results with different features
are presented in Table 7 and compared with the previous
speaker-dependent 10-fold results in Tables 2 and 4 (simply
denoted as “10-fold” in the table). As shown in the table,
emotion recognition accuracy under the more stringent
LOSO condition is lower than when test speakers are rep-
resented in the training set. This expected behavior applies
to all feature types. When tested alone, the MSFs clearly
outperform MFCC and PLP features. When combined
with prosodic features, MFCC features yield the best per-
formance if SN is applied; otherwise, the MSFs still prevail.
As SN is not applied in typical real-life applications, the
proposed features might be more suitable for these more
realistic scenarios.

However, it should also be noted that the Berlin data-
base has limited phonetic content (10 acted sentences),
hence limiting the generalizability of the obtained results.
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It is also useful to briefly review performance figures
reported on the Berlin database by other works. Although
the numbers cannot be directly compared due to factors
such as different data partitioning, they are still useful for
general benchmarking. Unless otherwise specified, the
results cited here are achieved for recognizing all seven
emotions with UL features. For works that do not use
speaker normalization, 86.7% recognition rate is achieved
under 10-fold cross-validation in (Schuller et al., 2006),
by using around 4000 features. The accuracy is slightly
improved to 86.9% after optimizing the feature space, but
the dimensionality of the optimized space is not reported.
In (Lugger and Yang, 2008), 88.8% accuracy is achieved
by employing a three-stage classification scheme, but based
on recognition of six emotions only (no disgust). Among
the works that use speaker normalization, 83.2% recogni-
tion rate is obtained in a leave-one-speaker-out experiment
(Vlasenko et al., 2007) by extracting around 1400 acoustic
features for data mining. However, no information is pro-
vided about the final number of features used. The accu-
racy is further improved to 89.9% by integrating both
UL and FL features.

5.2. Experiment II: continuous emotion regression

The well-established descriptive framework that uses
discrete emotions offers intuitive emotion descriptions
and is commonly used. The combination of basic emotion
categories can also serve as a convenient representation of
the universal emotion space (Ekman, 1999). However,
recent research efforts also show an increasing interest in
dimensional representations of emotions for SER (Grimm
et al., 2007a; Grimm et al., 2007b; Wollmer et al., 2008;
Giannakopoulos et al., 2009). The term “dimensional” here
refers to a set of primary emotion attributes that can be
treated as the bases of a multi-dimensional emotion space,
wherein categorical descriptors can be situated by coordi-
nates. A dimensional framework allows for gradual change
within the same emotion as well as transition between emo-
tional states. In this experiment, we recognize the three
continuous emotion primitives – valence, activation and
dominance – in the VAM database.
Fig. 15. Mean correlations for MSF, MFCC an
5.2.1. Continuous emotion recognition

Leave-one-out (LOO) cross-validation is used to enable
comparisons with the results reported in (Grimm et al.,
2007a). In this LOO test, the speaker in the test instance
is also represented in the training set. Akin to the compar-
ison framework in Section 5.1, regression is performed
using (1) spectral features, (2) prosodic features, and (3)
combined prosodic and spectral features (without SN).
The SFS algorithm is employed to select the best features
for the support vector regressors (SVRs). Experiments
are carried out on three datasets: VAM I, VAM II, and
VAM I + II. Ideally, LOO cross-validation on N-sample
data requires SFS to be applied to all the N different train-
ing sets, each containing N � 1 samples. However, since N
is reasonably large here (478, 469, and 947 for VAM I, II,
and I + II, respectively), including the test sample hardly
impacts the SFS selections. Thus in each experiment, fea-
ture selection is carried out using all the samples of the cor-
responding dataset. LOO is then used to re-train the
regressor using the N � 1 samples in each validation trial
and test the remaining sample.

Correlation coefficient r and mean absolute error e are
the two performance measures to be calculated. For two
sequences xn and yn of the same length, the correlation
coefficient is calculated using Pearson’s formula:

r ¼
P

nðxn � �xÞðyn � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
nðxn � �xÞ2

P
nðyn � �yÞ2

q ; ð16Þ

where �xð�yÞ is the average of xn (yn). Mean absolute error is
used, identical to the error measure employed in (Grimm
et al., 2007a).

Mean correlations, averaged over the three primitives,
are shown in Fig. 15 for the spectral features. Unlike the
emotion classification results for the Berlin database,
MFCC features furnish better regression performance on
the VAM datasets as suggested by the figure. A closer
examination (see also Table 8) reveals that the gain of
MFCC features over MSFs is mainly due to the former’s
better performance on the valence primitive, especially for
the VAM II dataset. Such results suggest that MFCC fea-
tures are more competent than the proposed features at
d PLP features selected using SFS (VAM).



Table 8
Regression results for continuous emotions on the VAM database using MSF, MFCC, and PLP features.

Dataset Feature Correlation (r) Absolute error (e) Average

Valence Activation Dominance Valence Activation Dominance �r �e

VAM I MSF 0.60 0.86 0.81 0.11 0.15 0.15 0.76 0.14
MFCC 0.65 0.87 0.81 0.11 0.14 0.15 0.78 0.13
PLP 0.61 0.86 0.79 0.11 0.16 0.16 0.75 0.14

VAM II MSF 0.32 0.74 0.66 0.15 0.16 0.16 0.57 0.16
MFCC 0.46 0.74 0.68 0.14 0.16 0.15 0.63 0.15
PLP 0.26 0.63 0.59 0.15 0.18 0.16 0.49 0.16

VAM I + II MSF 0.46 0.80 0.75 0.13 0.17 0.16 0.67 0.15
MFCC 0.52 0.79 0.74 0.13 0.17 0.16 0.68 0.15
PLP 0.42 0.75 0.70 0.13 0.18 0.17 0.62 0.16
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determining the positive or negative significance of emo-
tions (i.e. valence). On the other hand, the two feature types
provide very close performance for recognizing activation

and dominance as indicated by the correlation curves for
individual primitives (not shown). PLP features give infe-
rior regression results on VAM II and VAM I + II, again
becoming the spectral feature type that yields the worst
SER outcomes. The highest mean correlation achieved by
each feature type in Fig. 15 is further interpreted in Table
8 by showing the regression performance for individual
primitives. Comparing the three primitives, activation

receives the best correlations (0.63–0.87), while valence

shows significantly lower correlations (0.26–0.65) for all
features. It is also observed that the absolute regression
errors between the different spectral feature types are quite
close.

Regression of prosodic and combined features is consid-
ered in Fig. 16 and Table 9. The machine recognition and
human subjective evaluation results given in (Grimm
et al., 2007a) are also included in Table 9 for reference.
Note that in (Grimm et al., 2007a), only the standard devi-
ation of subjective scores is presented for each primitive.
The error is the standard deviation minus a constant bias
term that depends on the number of evaluators, which
can be inferred from the paper. As shown in the figure
and table, adding spectral features to prosodic features
improves the correlations for all primitives on all datasets,
and slightly reduces the estimation errors in some cases.
Fig. 16. Mean correlations for prosodic and com
The MFCC features (combined with prosodic features) still
deliver the best performance, followed by the proposed fea-
tures. Again the advantage of the MFCC features over
MSFs is on recognizing valence. The performance gaps
between MSFs and MFCC features in Table 8 appear nar-
rowed in Table 9, indicating that the prosodic features
enhance MSF performance more than MFCC perfor-
mance, mainly because the prosodic features contribute
more to improving valence recognition for the MSF case,
even though overall MFCC performance is slightly better.

The recognition tendency for the primitives in Table 9 is
the same as the trend observed in Table 8. The primitive
activation is best estimated with up to 0.90 correlation
achieved on VAM I, followed by dominance whose regres-
sion performance is more moderate. Even though the inclu-
sion of spectral features improves the correlations for
valence, the attained values are relatively low for all feature
combinations. Nevertheless, even human evaluations give
poor correlations for recognizing valence compared to the
other two primitives.

Overall, the recognition system using combined features
yields higher correlations and smaller estimation errors
compared to the machine recognition results in (Grimm
et al., 2007a). The performance of the proposed recognition
system appears to be somewhat superior to human assess-
ment; this however merely reflects the capability of
machines to be more consistent (but not more accurate)
than humans in performing the emotion labeling task. In
bined features selected using SFS (VAM).



Table 9
Regression results for continuous emotions on the VAM database using prosodic and combined features.

Dataset Feature Correlation (r) Absolute error (e) Average

Valence Activation Dominance Valence Activation Dominance �r �e

VAM I PROS only 0.58 0.85 0.82 0.11 0.16 0.15 0.75 0.14
PROS + MSF 0.66 0.90 0.86 0.10 0.13 0.13 0.81 0.12
PROS + MFCC 0.66 0.90 0.86 0.10 0.13 0.13 0.81 0.12
PROS + PLP 0.62 0.90 0.85 0.11 0.13 0.14 0.79 0.13
Grimm et al. (2007a) N/A N/A N/A N/A N/A N/A 0.71 0.27
Human 0.49 0.78 0.68 0.17 0.25 0.20 0.65 0.21

VAM II PROS only 0.38 0.70 0.64 0.14 0.17 0.15 0.57 0.15
PROS + MSF 0.48 0.78 0.73 0.14 0.15 0.14 0.66 0.14
PROS + MFCC 0.54 0.79 0.73 0.13 0.15 0.14 0.69 0.14
PROS + PLP 0.45 0.75 0.70 0.14 0.16 0.14 0.63 0.15
Grimm et al. (2007a) N/A N/A N/A N/A N/A N/A 0.43 0.23
Human 0.48 0.66 0.54 0.11 0.19 0.14 0.56 0.15

VAM I+II PROS only 0.47 0.77 0.75 0.13 0.17 0.15 0.66 0.15
PROS + MSF 0.55 0.82 0.80 0.13 0.15 0.14 0.72 0.14
PROS + MFCC 0.56 0.83 0.80 0.12 0.15 0.14 0.73 0.14
PROS + PLP 0.52 0.82 0.78 0.13 0.16 0.15 0.71 0.15
Grimm et al. (2007a) N/A N/A N/A N/A N/A N/A 0.60 0.24
Human 0.49 0.72 0.61 0.14 0.22 0.17 0.61 0.18
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(Grimm et al., 2007b), good estimation results are also
achieved for activation and dominance on VAM I + II,
but valence is still poorly estimated with 0.46 correlation
reported. This corroborates the poor anger vs. joy classifi-
cation results in Tables 5 and 6, as the two emotions are
with the same activation level but opposite valence. Since
it has also been shown that anger vs. sadness, emotions
with opposite activation but similar valence, can be sepa-
rated very well, both the Berlin (discrete and acted) and
VAM (continuous and natural) databases show the ten-
dency of the SER systems to recognize activation more
accurately than valence.

Moreover, as might also be noticed from Figs. 15 and 16
as well as Tables 8 and 9, regression performance on VAM
I is always superior to the performance on VAM II, regard-
less of the feature types. This is because VAM I contains
utterances from “very good” speakers who are character-
ized by a high level of activity and a wide variety of emo-
tions, while VAM II consists of utterances from “good”
speakers that, though possessing high activity as well, pro-
duce a smaller scope of emotions (e.g. anger only) (Grimm
et al., 2008). VAM I + II, as a combination of VAM I and
VAM II, exhibits recognition performance intermediate
between VAM I and VAM II.
5.2.2. Cross-database evaluation

In (Grimm et al., 2007a), the authors mapped the con-
tinuous-valued estimates of the emotion primitives into dis-
crete emotion categories on the EMA corpus (Lee et al.,
2005). In this section, a similar experiment is performed
to apply the continuous primitives to classify the discrete
emotions in the Berlin database. More specifically, since
the regression performance varies for the three primitives
as shown in the previous experiment, several binary classi-
fication tasks are employed here to further evaluate the
primitives separately.

First, three SVRs are trained on the VAM I + II dataset
using the combined prosodic and proposed features, one
for each of the three primitives. Each SVR uses the set of
features selected by SFS on VAM I + II that yield the high-
est correlation. The Berlin database is then used as a sepa-
rate source for evaluation, where each file is assigned three
predicted primitive values by the three trained regressors.
The three estimated primitive values are then used as fea-
tures for classifying the seven emotions, yielding an overall
recognition rate of 52.7% (49.9%) under 10-fold cross-val-
idation with (without) SN. Even though this accuracy is
unattractive, it is still better than the 14% random chance,
indicating that the continuous primitives do convey useful
information about the discrete emotion classes in the Berlin
database. The low recognition rate could be due to inade-
quacy of using the three primitives. Also, no “mutual infor-
mation” relating the emotion data of the two databases is
available. Such information could have been produced by
having the same human subjects rate both databases on
both the discrete and primitive scales.

Three two-class classification tasks are designed to test
the primitive features: (1) anger vs. joy, (2) anger vs. sad-

ness, and (3) anger vs. fear, which mainly involve (though
not limited to) the recognition of valence, activation, and
dominance, respectively. Ideally, if the three primitives were
well recognized, valence, activation, and dominance would
be the features providing the best recognition performance
for tasks (1), (2), and (3), respectively.

Recognition results are listed in Table 10 where SN has
been applied (in the same way as did in Section 5.1). As can
be seen from the table, high classification accuracy is
achieved when discriminating anger vs. sadness (100%)
and anger vs. fear (83.7%) using only one primitive feature,



Table 10
Binary classification results with three primitive features (cross-database).

Valence
(%)

Activation
(%)

Dominance
(%)

All (%)

Anger vs. joy 63.6 61.6 61.1 58.6
Anger vs. sadness 65.6 100 99.5 99.0
Anger vs. fear 64.8 79.6 83.7 81.6
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namely activation and dominance, respectively. Although
the unrealistic 100% accuracy may be partly due to the
acted emotion in the Berlin database, the result still corrob-
orates previous results that showed the activation primitive
to be well recognized by machine. Combining all three
primitive features, however, does not improve the recogni-
tion performance. One notable difficulty, as expected,
arises when using valence to classify anger and joy, which
are with similar activations and opposite valence, resulting
in 63.6% recognition rate only. These cross-database
results reinforce our previous findings that activation and
valence are primitives with the best and worst estimation
performance, respectively. In addition, the seven-class
FDR scores for the three primitive features are valence:
0.6 (0.4), activation: 4.4 (3.7), and dominance: 3.9 (3.3) with
(without) SN, which again indicate that the valence feature
has the lowest discrimination power.
6. Conclusion

This work presents novel MSFs for the recognition of
human emotions in speech. An auditory-inspired ST repre-
sentation is acquired by deploying an auditory filterbank as
well as a modulation filterbank, to perform spectral decom-
position in the conventional acoustic frequency domain
and in the modulation frequency domain, respectively.
The proposed features are then extracted from this ST rep-
resentation by means of spectral measures and linear pre-
diction parameters.

The MSFs are evaluated first on the Berlin database to
classify seven discrete emotions. Typical short-term spec-
tral features and prosodic features are extracted to bench-
mark the proposed features. Simulation results show that
the MSFs outperform MFCC and PLP features when each
feature type is used solely, in terms of both FDR scores and
recognition accuracy. The proposed features are also
shown to serve as powerful additions to prosodic features,
as substantial improvement in recognition accuracy is
achieved once prosodic features are combined with the
MSFs, with up to 91.6% overall recognition accuracy
attained. In a LOSO cross-validation test, the MSFs give
superior performance except in the case when speaker nor-
malization is applied; MFCC combined with prosodic fea-
tures outperform MSFs combined with prosodic features.

Besides the classic discrete emotion classification, con-
tinuous emotion estimation is further investigated in this
study. MFCC features are shown to deliver the best results
in the regression experiments. However, the apparent gain
of MFCC features over MSFs is mainly due to the former’s
higher correlation with valence. For the other two primi-
tives, the performance of the proposed and MFCC features
are comparable. PLP features are found to deliver gener-
ally inferior outcomes relative to the other two spectral fea-
ture types. Combining spectral and prosodic features
further improves the regression results. Promising perfor-
mance is achieved for estimating activation and dominance,
but lower performance is observed with valence, a trend
also reported in other continuous emotion recognition
studies. Moreover, the continuous emotion primitives are
applied to classify discrete emotions. Among the three
primitive features, activation and dominance are shown to
be useful for classifying discrete emotions, but further
investigation is needed for the valence parameter to achieve
practical performance figures.

Combining the performance results for the Berlin and
VAM databases, the new MSFs appear to offer equally
competitive performance with respect to prosodic and
MFCC features. Over the decades, MFCCs have been well
optimized and demonstrated good performance for auto-
matic speech recognition applications. However, features
extracting modulation spectral information have recently
demonstrated promising performance for various applica-
tions in speech processing (e.g. Falk and Chan, 2008,
2010a,b). This paper has demonstrated the potential and
promise of the MSFs for emotion recognition. With possi-
ble refinement in future work, the performance of modula-
tion domain features could be further improved. Hence,
further research on the use of MSFs for SER can be
beneficial.
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