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Abstract

Objective measurement of dysarthric speech intelligibility can assist clinicians in the diagnosis of speech disorder severity as well as in
the evaluation of dysarthria treatments. In this paper, several objective measures are proposed and tested as correlates of subjective intel-
ligibility. More specifically, the kurtosis of the linear prediction residual is proposed as a measure of vocal source excitation oddity. Addi-
tionally, temporal perturbations resultant from imprecise articulation and atypical speech rates are characterized by short- and long-term
temporal dynamics measures, which in turn, are based on log-energy dynamics and on an auditory-inspired modulation spectral signal
representation, respectively. Motivated by recent insights in the communication disorders literature, a composite measure is developed
based on linearly combining a salient subset of the proposed measures with conventional prosodic parameters. Experiments with the
publicly-available ‘Universal Access’ database of spastic dysarthric speech (10 patient speakers; 300 words spoken in isolation, per
speaker) show that the proposed composite measure can achieve correlation with subjective intelligibility ratings as high as 0.97; thus
the measure can serve as an accurate indicator of dysarthric speech intelligibility.
� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Dysarthria comprises a group of motor speech disorders
resultant from damage to the central and/or peripheral ner-
vous systems (Doyle et al., 1997). Dysarthric speech is
often associated with excessive nasalization, disordered
speech prosody, imprecise articulation, and variable speech
rate (Doyle et al., 1997) – factors that often render speech
unintelligible. One of the most common subtypes of dysar-
thria is termed “spastic dysarthria” with symptoms that
can range from strained phonation, imprecise placement
of articulators, incomplete consonant closure, monotone
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speech, and reduced voice onset time distinctions between
voiced and unvoiced stops (Duffy, 2005). Spastic dysarthria
is most commonly associated with cerebral palsy and trau-
matic brain injury (Duffy, 2005).

Currently, speech-language pathologists mainly rely on
subjective intelligibility assessment tests to characterize the
severity of speech disorders, as well as to monitor, plan treat-
ment, and document changes in intelligibility over time
(Klopfenstein, 2009). Subjective intelligibility tests, how-
ever, are costly, laborious, and subject to many intrinsic
variables and biases due to e.g., familiarity with the patients
and their speech pathologies (De Bodt et al., 2002; Van
Nuffelen et al., 2009). Objective measurement, on the other
hand, is economical and reliable (repeatable) and can assist
in surgical and/or pharmacological treatment evaluation
as well as in remote patient rehabilitation monitoring
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(Constantinescu et al., 2010). In fact, there is growing evi-
dence suggesting that clinicians are becoming more receptive
to automated machine-based systems that assist in treat-
ment decisions (e.g., Hill et al., 2006; Maier et al., 2009).

In the past, a handful of objective intelligibility measures
have been proposed for dysarthric speech. The system
proposed by Middag et al. (2009) used phonemic and pho-
nological features that were force-aligned to the acoustic-
phonetic transcription of the target word. Alignment was
achieved by means of an automatic speech alignment
algorithm trained on acoustic models of “healthy” speech.
Features were then mapped to an intelligibility score using
a linear regression function. Additionally, the work
described by Gu et al. (2005) computed distance measures
(e.g., Itakura–Saito distortion) between the produced dis-
ordered speech utterance and the same utterance spoken
by a healthy individual. To account for differences in utter-
ance durations, dynamic time warping was applied.

Today, automatic speech recognition (ASR) has become
a popular method of objectively quantifying dysarthric
speech intelligibility for speakers with mild or moderate dys-
arthria (e.g., Doyle et al., 1997; Ferrier et al., 1995; Maier
et al., 2009; Sharma et al., 2009); technological advances,
however, are still needed before ASR is used for severe dys-
arthric speakers (Middag et al., 2009; Rudzicz, 2007). Major
limiting factors in the widespread use of ASR, however,
include limited vocabulary sizes ranging from 10–70 words
(Doyle et al., 1997), the need for speaker-dependent (or
adaptive) acoustic models (Raghavendra et al., 2001;
Rudzicz, 2007), and the sparseness of available data needed
to accurately train such models (Green et al., 2003).

The methods mentioned above require a priori informa-
tion, such as the signal or feature prototypes of the target
word being uttered. In many practical applications, how-
ever, such information may not be available and “blind”

measures are more convenient. The majority of existing
blind methods rely on prosodic measurements, such as fun-
damental frequency (f0) variation, tone unit duration, and
second-formant slope transitions (Bunton et al., 2000;
Schlenck et al., 1993; Kent et al., 1989), which have been
shown to be useful indicators of dysarthric speech intelligi-
bility (Klopfenstein, 2009). Recently, the power spectrum
of the envelope of the speech signal, or modulation spec-
trum, was used to characterize rhythmic disturbances in
dysarthric speech. The study suggested that the perturba-
tions of speech temporal patterns associated with dysar-
thria played an important role in intelligibility (LeGendre
et al., 2009).

Subjective listening tests of dysarthric speech suggest
that intelligibility can be expressed as a weighted linear
combination of different perceptual dimensions, such as
articulation, vocal harshness, prosody, and nasality (De
Bodt et al., 2002). In this paper, several parameters are pro-
posed and tested as correlates of subjective intelligibility.
The parameters measure abnormal behaviours found in
dysarthric speech, such as vocal source excitation oddity,
temporal dynamics perturbations, hypernasality, and dis-
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ordered prosody. Our results (see Section 3.3) suggest that
the measures are complementary and when linearly com-
bined can serve as an accurate indicator of dysarthric
speech intelligibility. Moreover, in comparison with ASR,
the proposed method is considerably simpler to design
and implement. The remainder of this paper is organized
as follows: Section 2 describes the proposed measures;
experimental setup and results are reported in Section 3;
and discussion and conclusions are presented in Sections
4 and 5, respectively.
2. Objective measurement of spastic dysarthric word

intelligibility

Several factors are known to adversely affect speech
intelligibility for individuals with dysarthria (De Bodt
et al., 2002). The most prominent are associated with atyp-
ical vocal source excitation (e.g., vocal harshness), tempo-
ral dynamics (e.g., unclear distinction between adjacent
phonemes due to imprecise placement of articulators),
hypernasality, and disordered prosody (e.g., monotonic-
ity). In order to blindly assess speech intelligibility, mea-
sures need to be developed such that perturbations in
typical vocal source excitation, temporal dynamics, nasal-
ity, and prosody can be characterized. In this paper, several
such measures are proposed and tested as correlates of sub-
jective intelligibility.
2.1. Separation of vocal source and vocal tract information

Linear prediction (LP) analysis has been widely used in
speech applications to separate vocal source (glottal) exci-
tation, u(n), and vocal tract modulation, h(n), from the pro-
duced speech signal, s(n) = u(n) � h(n), where “*” indicates
convolution (Benesty et al., 2008). Commonly, the vocal
tract is modeled as a time-varying all-pole filter given by

HðzÞ ¼ 1

AðzÞ ¼
G

1�
Pp

k¼1akz�k
: ð1Þ

Hence, the produced speech signal s(n) can be approxi-
mated by

sðnÞ ¼
Xp

k¼1

aksðn� kÞ þ GuðnÞ: ð2Þ

The coefficients ak, k = 1, . . . ,p, of the all-pole filter depend
on the shape and resonant characteristics of the vocal tract
and determine the spectral characteristics of the particular
sound being generated. The excitation signal, in turn, is
approximated either as a quasi-periodic train of impulses
for voiced speech segments, random noise for unvoiced
segments, or a combination thereof for voiced fricatives
(e.g., ‘v’) (Benesty et al., 2008); the multiplicative factor
G is the gain applied to the excitation signal.

Linear prediction analysis assumes that the current sig-
nal sample can be predicted by a linear combination of p

previous samples. The predicted sample ŝðnÞ is given by
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ŝðnÞ ¼
Xp

k¼1

âksðn� kÞ: ð3Þ

With this assumption, the linear prediction error, or LP
residual r(n), will correspond to the excitation signal multi-
plied by the gain factor G,

rðnÞ ¼ sðnÞ � ŝðnÞ ffi GuðnÞ; ð4Þ

where coefficients âk in (3) can be estimated by minimizing
the energy of r(n) via an autocorrelation or a covariance
method (Benesty et al., 2008). Commonly, p = 10 and
p = 18 are used for speech sampled at 8 and 16 kHz sample
rates, respectively. In summary, with LP analysis, vocal
source information is characterized by the LP residual sig-
nal and vocal tract shaping is characterized by the esti-
mated LP parameters âk. In the results described herein,
LP analysis is performed over 32-millisecond frames with
10-millisecond frame shifts.

2.2. Atypical vocal source excitation

As seen from (4), linear prediction residuals correspond
to the vocal source excitation signals, thus for voiced
speech segments, are associated with glottal pulses and
have strong impulse-like peaks (Ananthapadmanabha
and Yegnanarayana, 1979). For clean natural speech, such
LP residual peaks will render the LP residual distribution
with a heavier tail or a higher kurtosis value (Gillespie
et al., 2001). With spastic dysarthric speech, however, its
vocal harshness characteristics are produced by more
prominent noise-like excitation patterns, which are associ-
ated with a decrease in LP residual kurtosis values. This
behaviour is illustrated by the plots in Fig. 1, where sub-
plots (a) and (b) show, from top to bottom, the waveform
0 5 10 15 20 25 30 35 40 45

time (ms)

waveform

LP residual

Fig. 1. Waveform and LP residual of a 45 ms segment of the phoneme /o/ in ‘
low word intelligibility (6%) and (b) mild dysarthria and very good intelligibil
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and LP residual signals for severe and mild dysarthric
speech, respectively.

As can be seen from the plots, for the severe dysarthric
speech signal (with subjective word intelligibility around
6%), the LP residual signal exhibits prominent noise-like
characteristics with a kurtosis value approaching nullity
(i.e., that of a Gaussian distribution). Additionally, the
monotone sinusoidal-like characteristics of the speech sig-
nal can be more accurately represented by a linear predic-
tion model, causing a decrease in the residual signal peaks.
As intelligibility increases, however, a more typical LP
residual pattern can be observed with prominent peaks
occurring during glottal excitations (see Fig. 1(b)), causing
an increase in the LP residual kurtosis. In order to quantify
such vocal source excitation atypicality, an LP residual
kurtosis metric K is used

KLP ¼
N
PN

n¼1ðrðnÞ � �rÞ4PN
n¼1ðrðnÞ � �rÞ2

� �2
� 3; ð5Þ

where �r indicates the sample average of r(n) and N is the
total number of sample points.

2.3. Perturbations in temporal dynamics

Speech temporal impairments can include unclear dis-
tinction between adjacent phonemes due to imprecise
placement of articulators, slower speech rates, and rhyth-
mic disturbances, to name a few (Duffy, 2005). LeGendre
et al. (2009) used long-term temporal dynamics (256 ms
and greater) to characterize rhythm pattern perturbations.
In this paper, both short-term and long-term temporal
dynamics measures are computed and explored as possible
indicators of dysarthric word intelligibility.
0 5 10 15 20 25 30 35 40 45

time (ms)

LP residual

waveform

for’. The subfigures are for individuals with (a) severe dysarthria and very
ity (95%).
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2.3.1. Short-term temporal dynamics

Here, the zeroth order cepstral coefficient (c0 = logG) is
computed as a measure of short-term log-spectral energy
and the zeroth order delta coefficient is used as a measure
of log-energy rate of change (Huang et al., 2001). Let
c0(m) denote the zeroth order cepstral coefficient for frame
m. Dc0(m) represents the zeroth order delta coefficient and
is computed as Picone (1993)

Dc0ðmÞ ¼
XL

l¼�L

l c0ðmþ lÞ; ð6Þ

where the normalization factor
PL

l¼�Ll2 is omitted as it
does not affect the results and L = 3 is used.

The plots in Fig. 2(a) and (b) depict, from top to bot-
tom, the waveform, log-energy, and delta log-energy for
severe and mild dysarthric speech utterances of the word
‘overshadowed’, respectively. In order to capture temporal
dynamics information, sample statistics are computed from
C samples of Dc0 represented by xi below. In particular, the
standard deviation (rD), skewness ðSDÞ, and kurtosis ðKDÞ
are computed according to

rD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

C � 1

XC

i¼1
ðxi � �xÞ2

r
; ð7Þ

SD ¼
ffiffiffiffi
C
p PC

i¼1ðxi � �xÞ3PC
i¼1 xi � �xð Þ2

� �3=2
; ð8Þ

KD ¼
C
PC

i¼1ðxi � �xÞ4PC
i¼1 xi � �xð Þ2

� �2
� 3; ð9Þ

where �x indicates the sample average of xi. The skewness
and kurtosis parameters are used as a measure of asymme-
1 2 3 4 5 6 7
time (s)

log−energy

waveform

delta
log−energy

Fig. 2. Waveform, log-energy, and delta log-energy for individuals with (a) seve
and very good intelligibility (95%). The word being uttered is ‘overshadowed’
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try and peakedness of the distribution of the Dc0 samples,
respectively.
2.3.2. Long-term temporal dynamics
In order to capture long-term temporal dynamics of the

speech signal, an auditory-inspired modulation spectral sig-
nal representation is used (Falk and Chan, 2010). The
modulation spectrum characterizes the rate of change of
long-term speech temporal envelopes. In our experiments,
the modulation spectral signal representation is obtained
using the signal processing steps depicted by Fig. 3.

First, the dysarthric speech signal s(n) is filtered by a
bank of 23 equivalent rectangular bandwidth critical-band
filters (Glasberg and Moore, 1990; Slaney, 1993). The out-
put signal of the jth filter is given by

sjðnÞ ¼ sðnÞ � hjðnÞ; ð10Þ

where hj(n) is the jth filter impulse response. Temporal
dynamics information is obtained from the temporal enve-
lope of sj(n). The temporal envelope (or Hilbert envelope) is
given by the magnitude of the complex analytic signal,
namely, ~sjðnÞ ¼ sjðnÞ þ |HfsjðnÞg, where Hf�g denotes the
Hilbert transform. Hence,

ejðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sjðnÞ2 þHfsjðnÞg2

q
: ð11Þ

Temporal envelopes ej(n) are then windowed, with the mth
windowed ej(n) denoted henceforth as ej(m), where the time
variable n is dropped for convenience. The discrete Fourier
transform Ff�g is then used to compute the modulation
spectrum Ejðm; f Þ ¼ jFðejðmÞÞj for frame m and modula-
tion frequency f. Lastly, modulation frequency bins are
grouped into K bands. In order to emulate an auditory-
inspired modulation filterbank (Dau et al., 1996), K = 8
second-order bandpass filters with a quality factor Q = 2
1 1.2 1.4 1.6 1.8 2 2.2 2.4
time (s)

log−energy

waveform

delta
log−energy

re dysarthria and very low word intelligibility (6%) and (b) mild dysarthria
.
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Fig. 3. Block diagram of the signal processing steps involved in the
computation of the modulation spectrum.

T.H. Falk et al. / Speech Communication xxx (2011) xxx–xxx 5
are used; filter center frequencies range from 2–64 Hz. The
kth modulation band energy for frame m is denoted as
Ej;kðmÞ; k ¼ 1; . . . ;K.

The modulation energy Ej;kðmÞ is then averaged over all
active speech frames to obtain

�Ej;k ¼
1

Nact

XNact

i¼1

Eact
j;k ðiÞ; ð12Þ

where Nact denotes the number of active speech frames
(found via a simple energy-threshold based voice activity
detection algorithm) and Eact

j;k ðiÞ the modulation energy of
such frames. Previous research has suggested that natural
speech contains dominant modulation frequencies from
2–20 Hz (Drullman et al., 1994b,a) with spectral peaks at
approximately 4 Hz (Arai et al., 1996). It is hypothesized
that prolonged phonemes, slower speech rates, as well as
the unclear distinction between adjacent phonemes caused
by imprecise placement of articulators, will cause a shift of
the modulation frequency content to modulation frequen-
cies below 4 Hz. In turn, as intelligibility levels increase,
modulation frequency content will be better spread across
higher modulation frequencies, as observed with natural
speech (Drullman et al., 1994a). In order to characterize
this oddity in speech temporal dynamics, the ratio of mod-
ulation spectral energy at modulation frequencies lesser
than 4 Hz to modulation frequencies greater than 4 Hz is
proposed. The low-to-high modulation energy ratio
(LHMR) is given by

LHMR ¼
PK

k¼1

P23
j¼1Ej;kP8

k¼Kþ1

P23
j¼1Ej;k

; ð13Þ

where K corresponds to the index of the modulation filter
centered at approximately 4 Hz; in our simulations, this
corresponds to K ¼ 4.

The proposed LHMR measure differs from the one pro-
posed by LeGendre et al. (2009) (called Ratio_2000) in sev-
eral manners. First, the developed measure incorporates
information across all 23 acoustic frequency bands and
not just the octave band centered at 2 kHz. Second, the
use of the Hilbert transform for temporal envelope calcula-
tion, as opposed to half-wave rectification and lowpass fil-
tering at 30 Hz, allows for modulation frequencies beyond
30 Hz to be incorporated; such higher frequencies have
been shown in the past to be important for intelligibility
Please cite this article in press as: Falk, T.H. et al., Characterization of atypi
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estimation (Falk et al., 2010; Drullman et al., 1994a).
Lastly, the proposed measure emulates the psychoacoustic
insights described by Dau et al. (1996, 1997) and uses an
auditory-inspired modulation filterbank to group modula-
tion frequency bins; with the Ratio_2000 measure, simple
averaging of Fourier transform-derived frequency bins is
performed.

2.4. Nasality

Previous research has suggested that formant frequen-
cies and their bandwidths can be used to characterize nasal-
ity. As examples, the bandwidth of the first formant
frequency was shown to be related to nasality (Fant,
1960; Baken and Orlikoff, 2000; O’Shaughnessy, 2008); for-
mant shifts were observed in (House and Stevens, 1956;
Baken and Orlikoff, 2000); and more recently, the first four
formants and their bandwidths were used to classify nasal-
ity (Zecevic, 2002).

We investigate the use of the first two formant frequen-
cies (F1 and F2) and their bandwidths (BW1 and BW2) for
dysarthric word intelligibility estimation. The open source
Wavesurfer software (Sjolander and Beskow, 2000) was
used to compute Fi and BWi (i = 1 and 2), over voiced
speech segments, using the tracking algorithm described
in (Talkin, 1987). Default parameters were used, more spe-
cifically: 12th order LP analysis, 0.7 pre-emphasis factor,
and 49 ms (Hamming) analysis windows with a 10 ms win-
dow shift. Here, the average and standard deviation of the
per-frame estimated formant frequencies (F i and rF i ,
respectively) and bandwidths (BW i and rBW i ) are tested as
correlates of word intelligibility.

2.5. Prosody

Three conventional parameters are computed in order to
characterize disordered prosody (Bunton et al., 2000;
Schlenck et al., 1993). The first two parameters are related
to the variation in fundamental frequency (f0), namely, f0
standard deviation (rf0) and f0 range (Df0) (see Schlenck
et al. (1993)). Pitch estimates are computed using a robust
adaptive pitch tracker algorithm (Talkin, 1995). The third
parameter corresponds to the voicing percentage, com-
puted as the ratio between the duration of voiced segments
in the uttered word and the duration of the entire utter-
ance. The measure is represented by %V and has been used
in the past to characterize speech disorders (Maier et al.,
2009; Colcord and Adams, 1979).

2.6. Composite measure

Previous subjective perceptual studies of dysarthric
speech suggest that intelligibility can be expressed as a
weighted linear combination of features from different per-
ceptual dimensions, such as articulation, vocal quality,
nasality, and prosody (De Bodt et al., 2002). Hence, in order
to further improve intelligibility estimation performance, a
cal vocal source excitation, temporal dynamics and prosody for objective
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composite measure is developed below consisting of a linear
combination of the six key parameters shown to correlate
significantly with subjective scores (see parameters with cor-
relation values in bold in Table 2). Similar to (De Bodt
et al., 2002), nasality was shown to contribute marginally
to intelligibility estimation, thus formant-related parame-
ters are not included in the composite measure given by

f ¼ A0 þ A1 � KLP þ A2 � rD þ A3 � LHMR

þ A4 � rf 0 þ A5 � Df 0 þ A6 �%V:

In order to gauge the degree of influence of each constitu-
ent measure, the six parameters are normalized to zero
mean and unit variance. To estimate the weights Ai, the
available data is partitioned into mutually exclusive train-
ing and test datasets. The weights obtained using the (nor-
malized) training data subsets are described in Section 3.3.
Table 1
Demographics of the ten spastic dysarthric speakers.

Subject Gender Age Intelligibility (%) Category

1 Male 18 2 Very low
2 Male 18 15 Very low
3 Male 58 28 Low
4 Male Unreported 43 Low
5 Male 21 58 Mid
6 Male 40 91 High
7 Male 28 93 High

8 Female 51 6 Very low
9 Female 30 29 Low
10 Female 22 95 High
3. Experimental setup

3.1. Database: UA-speech

The data used in our experiments consisted of the audio
content of the Universal Access (UA-Speech) audio-visual
database made publicly-available by the University of Illi-
nois (Kim et al., 2008). Disordered speech data was col-
lected using an eight-microphone array, sampled at
16 kHz and digitized with 16-bit precision. In the array,
adjacent microphones were spaced apart by 1.5 inches
and each microphone sized 6 mm in diameter. One channel
of the array was reserved for recording DTMF tones,
which served as flags for subsequent offline word segmenta-
tion. In this experiment, speech recorded from microphone
no. 6 of the array was used.

Seventeen participants diagnosed with cerebral palsy
were recruited from the Rehabilitation Education Center
at the University of Illinois at Urbana-Champaign and
from the Trace Research and Development Center at the
University of Wisconsin-Madison. Participants were seated
comfortably in front of a laptop computer and asked to
read an isolated word displayed on a computer screen. Each
participant read three blocks of words, totalling 765 iso-
lated word utterances per participant. Each block contained
255 words, including 155 words that were repeated in each
block and 100 uncommon words that differed across blocks.
The repeated words consisted of the 10 digits (‘zero’ to
‘nine’), 26 radio alphabet letters (e.g., ‘Alpha’, ‘Bravo’),
19 computer commands (e.g., ‘backspace’, ‘delete’), and
the 100 most common words in the Brown corpus of written
English (e.g., ‘it’, ‘is’, ‘you’). The 300 uncommon words (100
per block) were selected from children’s novels digitized by
Project Gutenberg and consisted of words such as ‘natural-
ization’ and ‘moonshine’ (Kim et al., 2008).

To assess speech intelligibility, a subjective listening test
was performed. Two hundred words were selected for the
test, including 10 digits, 25 radio alphabet letters, 19 com-
puter commands, and 73 words randomly selected from
Please cite this article in press as: Falk, T.H. et al., Characterization of atypi
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each of the common and uncommon word categories. For
the purpose of intra-listener reliability assessment, 25 words
out of the 200 were arbitrarily chosen and uttered twice in
the list. The final 225 speech files were randomly ordered
(with a constraint that repeated words were not adjacent
to each other) and presented to the listeners. Five naive lis-
teners were recruited for each speaker; listeners were
between the ages of 18–40, native speakers of American
English, had no prior experience with disordered speech,
and had no previous training in phonetic transcription.

Listeners were instructed to provide orthographic tran-
scriptions of each of the 225 speech utterances presented
via headphones in a quiet environment; they were allowed
to listen to the words as many times as needed. Listener
transcriptions were then analyzed and the mean percentage
of correct responses, averaged across the five listeners, was
calculated to obtain the subjective intelligibility score of
each dysarthric speaker; an average intra-listener agree-
ment rate of 91.64% was obtained. Based on the averaged
intelligibility score, each speaker was then classified into
one of four intelligibility categories, namely,: very low (0–
25%), low (26–50%), mid (51–75%) and high (76–100%).
Below, data from the ten participants with spastic dysar-
thria were used; Table 1 summarizes their demographics.
3.2. Figures of merit

In order to assess the performance of the proposed and
benchmark prosody measures, the Pearson correlation
coefficient (R) is used and given by

R ¼
PN

i¼1ðwi � �wÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðwi � �wÞ2

PN
i¼1ðyi � �yÞ2

q ; ð15Þ

where wi corresponds to the ith participant’s subjective intel-
ligibility score, yi is the value of a measure calculated over the
speech data of participant i; �w the average of wi, and �y the
average of yi. Ultimately, the aim in objective intelligibility
estimation is to develop a measure that ranks similarly with
the subjective listening ratings. As a consequence, the Spear-
man rank correlation coefficient (RS) is also used as a figure
of merit. Spearman correlation is computed in a manner sim-
ilar to (15), except that the intelligibility and correlate values
cal vocal source excitation, temporal dynamics and prosody for objective
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are replaced by their rank values. Lastly, root-mean-square
error (RMSE) is used to assess word intelligibility measure-
ment accuracy of the proposed composite measures; RMSE

is computed as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðwi � yiÞ

2

N

s
; ð16Þ
3.3. Experimental results

Table 2 reports the Pearson (R) and Spearman rank (RS)
correlation coefficients, along with their corresponding
p � values (not to be confused with the order p of the LP
analysis), for the afore-developed measures. As can be
seen, the proposed KLP measure achieved significant corre-
lations (p < 0.05) with subjective intelligibility scores. Of
the four proposed temporal dynamics measures, two were
shown to correlate significantly with subjective ratings;
one characterized short-term (rD) and the other long-term
(LHMR) temporal dynamics perturbations. Additionally,
formant-related features did not correlate significantly with
listener scores, whereas all three prosodic parameters were
shown to correlate significantly (negatively).

As mentioned in Section 2.6, in order to develop the
composite measure f, the UA-Speech database was parti-
Table 2
Performance comparison for the proposed and benchmark prosody
measures. Performances of the composite measure are reported before
(fraw) and after (fmap) a 3rd order monotonic polynomial mapping, as well
as with severity classification, both before (fclass) and after (fclass,map) the
3rd order polynomial mapping.

Measure R p RS p

A typical vocal source excitation

KLP 0.88 0.001 0.81 0.005

Temporal dynamics

rD 0.71 0.020 0.81 0.005
SD 0.44 0.200 0.42 0.230
KD �0.16 0.650 �0.01 0.980
LHMR �0.65 0.040 �0.70 0.020

Nasality

F 1 0.46 0.070 0.50 0.060
F 2 0.21 0.560 0.19 0.600
rF 1

0.12 0.740 0.19 0.600
rF 2

0.08 0.830 0.10 0.800
BW 1 �0.44 0.070 �0.46 0.063
BW 2 �0.05 0.740 �0.15 0.600
rBW 1

�0.10 0.650 �0.19 0.600
rBW 2

�0.13 0.320 �0.36 0.470

Prosody

rf0 �0.57 0.050 �0.43 0.210
Df0 �0.72 0.010 �0.76 0.010
%V �0.77 0.009 �0.75 0.001

Composite

fraw 0.94 10�5 0.89 10�4

fmap 0.95 10�5 0.89 10�4

fclass 0.96 10�5 0.96 10�6

fclass,map 0.97 10�5 0.96 10�6
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tioned into two disjoint sets. Speech files belonging to the
‘uncommon word’ category (300 files per participant)
served as (unseen) test data and the remaining files (465
files per participant) served as training data and were used
to obtain the weights Ai in (14). The last four rows of Table
2 report the performance of the composite measure on the
test set under four different scenarios. The first (fraw)
reports the performance of the “raw” intelligibility esti-
mates obtained directly from (14). The results for fmap are
obtained after a third-order monotonic polynomial regres-
sion is applied to the raw scores. This type of mapping is
commonly used in objective voice quality estimation tasks
and maps the objective scores onto the subjective scale
(ITU-T P.563, 2004; Falk and Chan, 2006). The mapping
provides a scale adjustment but does not alter the ranking
of the objective scores, as can be seen by the RS values
reported in Table 2. The plots in Fig. 4 depict the subjective
versus estimated intelligibility scores before and after the
3rd order mapping. As can be seen, the mapping adjusts
the estimates to better represent the subjective scale.

As reported by Schlenck et al. (1993), speech impairments
may differ not only with dysarthria type, but also by the
severity of the disorder. Accordingly, we explore further par-
titioning the training and test sets into mid-low (0–50%) and
mid-high (51–100%) intelligibility classes. These two classes
are chosen as they can be easily categorized by even an unex-
perienced therapist. The sub-partitions are then used to train
two “class-based” linear estimators (fclass) where the sub-
script class corresponds to either the ‘mid-low’ or ‘mid-high’
intelligibility classes. The overall performance obtained with
the class-based estimators, both before (fclass) and after a 3rd
order monotonic polynomial mapping (fclass,map), are
reported in the last two rows of Table 2 and are shown in
Fig. 4. As observed, the class-based estimators further
improve intelligibility estimation and result in significant
correlations with subjective scores and near-perfect rank
correlation (RS = 0.96). Moreover, the four composite mea-
sures, fraw, fmap, fclass, and fclass,map achieved RMSE values of
18.6, 10.4, 10.2 and 8.6, respectively. Lastly, Table 3 reports
the obtained Ai weights using the different composite
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Fig. 4. Estimated versus subjective intelligibility obtained with the
proposed composite measure under four scenarios, namely, fraw, fmap,
fclass and fclass,map.
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Table 3
Weights Ai of the composite measures fraw and fclass, where class assumes
labels ‘mid-low’ and ‘mid-high’.

Weight fraw fmid�low fmid�high

A0 45.82 24.99 77.53
A1 13.68 5.81 2.92
A2 8.92 6.59 4.27
A3 �0.87 �0.10 1.72
A4 1.34 0.79 9.08
A5 �8.83 �1.58 �8.73
A6 �6.36 �0.98 �7.58
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measurement configurations, namely fraw and fclass for clas-
ses mid-low and mid-high.
4. Discussion

This paper has described several objective measures of
different perceptual dimensions, such as vocal quality,
articulation, nasality, and prosody. It was shown that when
a salient subset of the measures are linearly combined, the
resultant composite measure outperforms the constituent
measures individually. This finding resonates closely with
those reported by De Bodt et al. (2002) for subjective per-
ceptual tests. As an example, on the test dataset used to
obtain the results reported for the composite measure in
Table 2, the best individual feature, namely KLP , achieved
R = 0.88 (p = 0.001) and RS = 0.81 (p = 0.005) when used
alone. As a consequence, the proposed fclass composite
measure attains an approximate 67% correlation-improve-
ment (R%) relative to using the best single measure alone.
Here, (R%) is computed as

R% ¼ Rcomposite � Rindividual

1� Rindividual
� 100% ð17Þ

and reflects the percentage reduction of the individual mea-
sure’s performance gap to perfect correlation (Falk and
Chan, 2006).

Commonly, dysarthric speech is considered monotone
and “robotic” (Klopfenstein, 2009). Hence, it is expected
that for more severe cases of dysarthria (low intelligibility)
lower pitch variability/range is obtained. The negative corre-
lations reported in Table 2 for prosody-related features,
however, suggest otherwise. While these findings may seem
counterintuitive, they are inline with those reported by
Schlenck et al. (1993), where the nature of dysprosody was
shown to vary with the severity of dysarthria. More specifi-
cally, monotonicity was reported for mild dysarthric speak-
ers only and higher pitch variation/range was observed for
speakers with severe disorders. This same behaviour was
observed with the prosody-related measures used here. As
examples, average rf0 = 24 Hz and Df0 = 92 Hz were
observed for mid-high intelligibility level speakers, whereas
rf0 = 40 Hz and Df0 = 165 Hz were found for mid-low intel-
ligibility speakers.

Careful scrutiny of the weights reported in Table 3 sug-
gest that other severity class dependencies may also exist.
Please cite this article in press as: Falk, T.H. et al., Characterization of atypi
measurement of dysarthric word intelligibility, Speech Comm. (2011), doi:10.
For example, short-term temporal dynamics and vocal
harshness, represented by parameters rD and KLP respec-
tively, have greater influence on intelligibility prediction
for the mid-low class than for the mid-high class. Prosody-
related parameters, on the other hand, have greater
influence on prediction for the mid-high class, corroborat-
ing findings reported by Schlenck et al. (1993). These find-
ings suggest that composite measures should be trained
separately for different degrees of dysarthria, as was the
case with the proposed fclass measure.

Severity class dependence was also observed for the pro-
posed LHMR measure. As seen from the weight A3 in
Table 3, a negative weight was obtained for mid-low speak-
ers, whereas a positive weight was found for mid-high intel-
ligibility speakers. This finding resonates closely with our
hypothesis that the unclear distinction between adjacent
phonemes will cause a shift of the significant modulation
frequency content to modulation frequencies below 4 Hz.
For severe disorders, higher LHMR values (i.e., greater
modulation spectral frequency content below 4 Hz) should
cause intelligibility levels to decrease. With mild dysarthria,
on the other hand, the significant modulation frequency
content is better spread across higher modulation frequen-
cies, much like what has been observed for “healthy”

speech (Drullman et al., 1994a). With healthy speech, how-
ever, modulation spectral content greater than 20 Hz is
often associated with unnatural speech components (e.g.,
noise) (Kim, 2004). As a consequence, higher LHMR val-
ues (i.e., lower modulation spectral content beyond 4 Hz)
should cause intelligibility levels to increase and this is
reflected by the positive A3 weight found for mid-high intel-
ligibility speakers (see Table 3).

Notwithstanding, for both the mid-low and mid-high
classes, the LHMR parameter has the lowest influence on
overall intelligibility prediction. This may be due to the fact
that the UA-Speech corpus used here is comprised of sin-
gle-word utterances. The long-term temporal disturbances
captured by the LHMR parameter are likely to result
in greater prediction influence when used with longer-
duration utterances (e.g., sentences, such as in (LeGendre
et al., 2009)) or with running speech.

Similar to the results reported in (De Bodt et al., 2002),
nasality was shown to be the least important dimension in
word intelligibility estimation and the investigated for-
mant-related features did not correlate significantly with
subjective listener scores. Notwithstanding, we investigated
the inclusion of parameters F 1 and BW 1 in (14) but did not
observe any improvement in intelligibility estimation per-
formance. While nasality may be prominent in spastic dys-
arthric speech, it does not seem to affect word intelligibility
prediction.

The developed measures have only been tested on adult
speakers with spastic dysarthria associated with cerebral
palsy. Future investigations should also focus on other
types of dysarthria (e.g., ataxic, hypokinetic), on children’s
speech (Saz et al., 2008), as well as on a more gender-
balanced participant pool, as gender differences may also
cal vocal source excitation, temporal dynamics and prosody for objective
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play a factor in intelligibility estimation (Schlenck et al.,
1993). Additionally, objective intelligibility measures may
not only assist clinicians in treatment evaluation, but may
also improve the performance of assistive technologies based
on automatic speech recognition (e.g., Hasegawa-Johnson
et al., 2006). These technologies may improve the commu-
nication ability of individuals with speech disorders, thus
ultimately enhancing their quality of life.

5. Conclusion

In this paper, several measures were proposed to charac-
terize vocal source excitation oddity and temporal dynam-
ics perturbations and shown to correlate significantly with
subjective word intelligibility ratings. A composite measure
was also developed based on linearly combining a salient
subset of the proposed measures and conventional pros-
ody-related measures; the composite measure was shown
to be a reliable indicator of dysarthric word intelligibility.
To assist clinicians in the diagnosis and treatment of speech
disorders, the composite measure can also be employed, in
conjunction with the constituent parameters of the mea-
sure, to characterize individual intelligibility degradation
factors such as vocal harshness, articulation, and
dysprosody.
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