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Nonintrusive Speech Quality Estimation
Using Gaussian Mixture Models

Tiago H. Falk, Student Member, IEEE, and Wai-Yip Chan, Member, IEEE

Abstract—An algorithm for nonintrusive speech quality esti-
mation based on Gaussian mixture models (GMMs) is presented.
GMMs are used to form an artificial reference model of the
behavior of features of undegraded speech. Consistency measures
between the degraded speech signal and the reference model serve
as indicators of speech quality. Consistency values are mapped to
an objective speech quality score using a multivariate adaptive
regression splines function. When tested on unseen data, the
proposed algorithm generally outperforms ITU-T standard P.563,
which is the current “state-of-the-art” algorithm. The algorithm
computes objective quality scores roughly twice as fast as P.563.

Index Terms—Gaussian mixtures, quality assurance, quality
measurement, quality of service, speech coding, speech quality,
speech transmission, telephony.

I. INTRODUCTION

SPEECH quality is a major contributor to the telecom-
munication user’s perception of quality of service. As

communications networks become more heterogeneous, iden-
tifying the root cause of voice quality problems can be a
challenging task. The evaluation and assurance of speech
quality has, consequently, become critically important for
telephone service providers. Traditionally, user opinion is
measured offline using slow and costly subjective listening
tests. In the most common test [1], listeners rate the speech they
just heard on a five-point opinion scale, ranging from “bad”
to “excellent.” The ratings are assigned integer scores ranging
from 1 for “bad” to 5 for “excellent.” The average of these
scores, termed mean opinion score (MOS), is widely used to
characterize the quality of telephony equipment and services.

As an alternative to subjective measurement, machine-au-
tomated “objective” measurement provides a rapid and eco-
nomical means to estimate user opinion and makes it possible
to perform real-time speech quality measurement on a net-
work-wide scale. Objective measurement can be performed
either intrusively or nonintrusively. Intrusive measurement,
also called double-ended or input–output-based measurement,
is based on measuring the distortion between the received
and transmitted speech signals, often with an underlying
requirement that the transmitted signal be of high quality
(“clean”). Nonintrusive measurement, also called single-ended
or output-based measurement, relies only on the received
speech signal to estimate its quality.
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Fig. 1. Architecture of the proposed algorithm.

A handful of nonintrusive measurement schemes have been
reported. In [2], comparisons between features of the received
speech signal and vector quantizer (VQ) codebook represen-
tations of the features of clean speech are used to estimate
quality. In [3], the VQ codebook reference is replaced with
a hidden Markov model. In [4] and [5], vocal tract modeling
and modulation-spectral features derived from the temporal
envelope of speech, respectively, provide quality cues for non-
intrusive quality measurement. Recently, a nonintrusive method
using neurofuzzy inference was proposed [6]. The International
Telecommunications Union ITU-T P.563 standard represents
the “state-of-the-art” algorithm [7].

This letter presents a novel method [8] of nonintrusive speech
quality estimation. Gaussian mixture models (GMMs) trained
on features extracted from clean speech signals are used to
form a model of normative behavior against which the features
of a test speech signal are assessed. A detailed description of
the algorithm’s functional blocks is presented in Section II.
The proposed method is tested on four “unseen” databases
and compared to P.563 in Section III.

II. DESCRIPTION OF THE PROPOSED ALGORITHM

The proposed nonintrusive measurement algorithm is de-
signed based on the architecture depicted in Fig. 1. First,
perceptual features are extracted from the test speech signal
frame by frame. The time segmentation module labels the fea-
ture vector of each frame as belonging to one of three possible
classes: voiced, unvoiced, or inactive. Offline, high-quality,
undistorted speech signals are used to produce a reference
model of the behavior of clean speech features. This is accom-
plished by modeling the probability distribution of the features
for each class with a GMM. Features extracted from the test
signal are assessed using the reference model, by calculating
a “consistency” measure with respect to each GMM. The
consistency values serve as indicators of speech quality and are
mapped to an estimated MOS value. A detailed description of
the algorithm’s functional blocks and design considerations are
given next.
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A. Feature Extraction and Time Segmentation

Perceptual linear prediction (PLP) cepstral coefficients [9]
serve as primary features and are extracted from the speech
signal every 10 ms. The coefficients are obtained from an
“auditory spectrum,” constructed to exploit three essential
psychoacoustic precepts: critical band spectral resolution,
equal-loudness curve, and intensity loudness power law. The
auditory spectrum is approximated by an all-pole autoregres-
sive model, whose coefficients are transformed to PLP cepstral
coefficients. The order of the autoregressive model deter-
mines the amount of detail in the auditory spectrum preserved
by the model. Higher order models tend to preserve more
speaker-dependent information. As we are interested in mea-
suring quality variation due to the transmission system rather
than the speaker, speaker independence is a desirable property.
Hermansky [9] suggests that fifth-order PLP coefficients serve
well as speaker-independent speech spectral parameters. PLP
coefficients were also used in [2].

Time segmentation is employed to separate the speech frames
into different classes. It is conjectured that each class exerts dif-
ferent influence on the overall speech quality. Time segmenta-
tion is performed using a voice activity detector (VAD) and a
voicing detector. The VAD identifies each 10-ms speech frame
as being active or inactive. The voicing detector further labels
active frames as voiced or unvoiced. The VAD from ITU-T
G.729B [10], omitting its comfort noise generation function-
ality, is used here. A more recent improved VAD algorithm may
be used to our advantage, though we leave this for future study.
Section II-D tests the usefulness of time segmentation.

B. GMM Reference Model

GMMs have been used extensively for speech processing and
are introduced here for the sake of notation. Let be a -di-
mensional vector. A Gaussian mixture density is a weighted sum
of component densities

(1)

where , are the mixture weights, with
, and , , are -variate Gaussian

densities with mean vector and covariance matrix . The
parameter list defines a particular Gaussian
mixture density, where .

GMM parameters are initialized using the -means algo-
rithm [11] and estimated using the expectation-maximization
(EM) algorithm [12]. The EM algorithm iterations produce
a sequence of models with monotonically nondecreasing
log-likelihood (LL) values. The algorithm is deemed to have
converged when the difference of LL values between two
consecutive iterations drops below .

C. Consistency Calculation and MOS Mapping

A GMM is used to model the PLP cepstral coefficients of
each class of speech frames. Using clean speech signals, three
different Gaussian mixture densities are trained. The
subscript “class” represents either voiced, unvoiced, or inactive

frames. In principle, by evaluating these densities at the de-
graded PLP cepstral coefficients (i.e., ), a measure
of consistency between the degraded coefficient vector and the
clean coefficient model is obtained. Voiced coefficient vectors
are applied to , unvoiced vectors to ,
and inactive vectors to .

We make a simplifying assumption that vectors between
frames are independent. We expect better performance from
more sophisticated approaches that model the statistical depen-
dency between frames, such as Markov modeling. Nevertheless,
for the benefit of low computational complexity, we seek to
determine how well the simpler approach works. Thus, for a
given speech signal, the consistency between the observation
and the model is calculated as

(2)

where are the degraded coefficient vectors, and
is the number of such vectors in the frame . Larger

indicates greater consistency. For each class, the product
of the consistency measure (2) and the fraction of frames of that
class in the speech signal is calculated. The three products for
the three classes serve as quality indicators to be mapped to an
objective MOS value. In preliminary experiments, we tested two
candidate mapping functions: multivariate polynomial regres-
sion and multivariate adaptive regression splines (MARS) [13].
With MARS, the mapping is constructed as a weighted sum of
basis functions, each taking the form of a truncated spline [14].
Simulation results showed that MARS provides better perfor-
mance; the results below are all based on using MARS.

D. Algorithm Design Considerations

A preliminary “calibration” experiment was performed to
find an effective combination of GMM configuration parame-
ters: and covariance matrix type. GMMs with 8, 16, or 32
components, and with diagonal or full covariance matrices,
are tested. A total of 12 MOS-labeled databases comprised of
both clean and degraded speech signals are used. The speech
databases include seven ITU-T P-series Supplement 23 (Ex-
periments 1 and 3) multilingual databases [15], two wireless
(IS-96A and IS-127 EVRC), and three multilingual databases
comprised of speech coded using the ITU-T G.728 speech
coder. The databases include speech coded using various stan-
dard codecs, speech produced under various channel errors,
tandeming, and acoustic noise conditions, and speech degraded
by various levels of modulated noise reference unit (MNRU).
The combined 12 databases contain 5624 speech file pairs with
subjective MOSs ranging from 1 to 4.83. All clean speech files
are used for training of the GMMs. We randomly select 90%
of the degraded speech files for training of the MARS mapping
function, and the remaining 10% are left for testing.

The performance of the algorithm is assessed using the cor-
relation and root-mean-square error (RMSE) between sub-
jective MOS and objective MOS [14]. The “calibration” per-
formance results presented in Table I are for MOSs measured
on a “per-file” basis. Columns V, VU, and VUI list test perfor-
mance figures for reference models designed for voiced frames
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TABLE I
PERFORMANCE OF FIFTH-ORDER PLP CEPSTRAL COEFFICIENTS

only, voiced and unvoiced frames, and all three frame types,
respectively. The largest improvement occurs when all three
frame types are taken into consideration. The configuration with
16 Gaussian components and diagonal covariance matrices is
deemed to provide a good compromise between accuracy and
complexity.

The results presented in Table I are based on an equal number
of Gaussian components across all three frame classes. For
clean speech, inactive frames have virtually no signal energy.
Such frames ought to be modeled with fewer Gaussian com-
ponents than voiced or unvoiced frames. A second calibration
experiment is performed with 16-component diagonal GMMs
for voiced and unvoiced frames and two-, four-, or eight-com-
ponent diagonal GMMs for inactive frames. The performance
results demonstrate that little gain is attained by using higher
order GMMs. The simplest configuration with a two-component
GMM for inactive frames is preferred.

Note that Gaussian mixture modeling is a data-driven ap-
proach that requires a considerable amount of training data. An
inherent advantage of the proposed algorithm is that the GMMs
are designed using clean speech, which can be obtained in a
large quantity at relatively little cost. Subjectively scored (de-
graded) speech is costly to produce. A smaller amount of such
speech can be used for training the MARS mapping function,
which has fewer parameters than the GMMs.

III. TEST RESULTS

The proposed algorithm, with a reference model using
16-component diagonal GMMs for voiced and unvoiced frames
and a two-component diagonal GMM for inactive frames, is
compared to P.563 using four MOS-labeled databases. None of
the speech material in these four databases has been applied to
the design of the proposed algorithm. The first database [16]
contains speech coded with a variety of wireline and wireless
codecs. The three other databases comprise speech coded with
the 3GPP2 selectable mode vocoder (SMV), standardized as
the cdma2000 speech coder.

A. Mixed Database

We use the mixed database described in [16] to assess the per-
formance of the algorithms for different distortion classes. The
database contains 240 subjectively scored speech files, covering

a total of 60 distortion conditions, grouped into seven major dis-
tortion classes. In Table II, performance results for the distor-
tion classes are expressed in terms of RMSE and average ab-
solute error (AAE). The results are obtained after third-order
monotonic polynomial regression, applied to eliminate offsets
and nonlinearities between the objective and subjective MOS
scales, as recommended in [7]. The AAE statistic offers an ad-
ditional perspective, whereas the correlation coefficient values
rank similarly as the MSE values and are omitted for brevity.

The results show that the proposed algorithm achieves lower
or comparable RMSE and AAE relative to P.563, with the
proposed algorithm looking somewhat more favorable in terms
of RMSE than AAE performance. A significant exception
occurs with the distortion class containing temporally shifted
and front-end clipped speech signals. For such distortions, the
poorer performance of the proposed algorithm is not surprising
as P.563 is equipped with a functional block that tests for
speech interruptions, muting, and time clippings; our scheme
currently does not feature this capability. Nonetheless, the re-
sults demonstrated are promising, and additional functionalities
are left for future study.

B. SMV Databases

Each of the SMV databases comprises 48 different degrada-
tion conditions, distributed over 3072 subjectively scored files.
Database 1 encompasses tandeming and nominal input level
conditions; database 2 covers channel impairments, and data-
base 3 covers noisy environment conditions. SMV is a newer
codec than the codecs represented in the training databases.
Evaluation using the SMV databases demonstrates the applica-
bility of the proposed algorithm to emerging codec technologies
[5].

For this experiment , RMSE, and algorithm processing
times are used to gauge algorithm performance. Table III
presents and RMSE, after third-order monotonic polynomial
regression, of “per-condition” MOSs for each database [14].
The column labeled “ ” lists percentage improvement in

obtained by using the proposed GMM-based method over
P.563. The percentage improvement is given by

(3)

and indicates percentage reduction of P.563’s performance
gap to perfect correlation. The column labeled “ ” lists
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TABLE II
PERFORMANCE ON MIXED DATABASE

TABLE III
PERFORMANCE ON SMV DATABASES

percentage reduction in P.563’s RMSE by using the proposed
scheme.

Note that the proposed algorithm outperforms P.563 on
databases 1 and 3 by as much as 64% in and 37% in RMSE.
The results for database 3 suggest that the proposed method may
be more effective than P.563 for speech in noisy environment
conditions. The algorithm achieves somewhat poorer results
than P.563 on database 2. Degradation conditions in database 2
encompass frame errors (0, 1, 3, and 5% frame error rate). The
results in Table II also suggest that the proposed algorithm may
underperform P.563 for such degradation conditions.

Finally, processing time is used to gauge computational com-
plexity. Here, the ANSI-C reference implementation of P.563 is
used. Computation time for the proposed algorithm comprises
the time for feature extraction and time segmentation and cal-
culation of the consistency values and the MARS mapping. The
ANSI-C implementation of the G.729B VAD algorithm is used.
The remainder of the algorithm is implemented using Matlab
version 6.5 Release 13. P.563 is clearly advantaged in this com-
parison. Simulations are run on a PC with a 2.8-GHz Pentium
4 processor and 2 GB of RAM. Processing times for the two
algorithms are shown in Table IV. For this comparison, three
files are randomly selected, one from each of the three SMV
databases. The processing times for the proposed algorithm are
expressed as percentage reduction in processing time relative to
P.563. Note that the proposed algorithm is capable of reducing
the processing time of P.563 by roughly 35%–45%. A com-
plete C implementation of the proposed algorithm would surely
reduce its computation time; a 50% reduction would be quite
achievable. Clearly, the proposed method offers low complexity
and accurate measurement of speech quality.

TABLE IV
ALGORITHM PROCESSING TIMES—SMV DATABASES

IV. CONCLUSION

A novel nonintrusive speech quality estimation algorithm is
proposed based on GMMs. The algorithm provides competitive
quality estimates relative to the current “state-of-the-art” algo-
rithm while requiring considerably lower computational com-
plexity. Further testing and refinement will likely lead to a more
comprehensive and robust algorithm. Moreover, the simplicity
and modular architecture of the proposed algorithm makes it
readily adaptable to wideband speech quality estimation.
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