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Abstract— In this paper, a single-ended quality measurement
algorithm for noise suppressed speech is described. The pro-
posed algorithm computes fast approximations of Kullback-
Leibler distances between Gaussian mixture (GM) reference
models of clean, noise corrupted, and noise suppressed
speech and a GM model trained online on the test speech
signal. The distances, together with a spectral flatness
measure, are mapped to an estimated quality score via a
support vector regressor. Experimental results show that
substantial improvement in performance and complexity can
be attained, relative to the current state-of-art single-ended
ITU-T P.563 algorithm. Due to its modular architecture,
the proposed algorithm can be easily configured to also
perform signal distortion and background intrusiveness
measurement, a functionality not available with current
standard algorithms.

Index Terms— Single-ended measurement, speech quality,
Gaussian mixture model, Kullback-Leibler distance, noise
suppression.

I. I NTRODUCTION

With the advances in speech communication technolo-
gies, noise suppression has become essential for appli-
cations such as hearing aids, mobile phones, and voice-
controlled systems. Today, algorithms such as the se-
lectable mode vocoder (SMV) [1] are capable of perform-
ing noise suppression with minimal detrimental effects to
the speech signal. The performance of noise suppression
algorithms can be assessed via subjective listening tests
([2], [3]). Subjective testing, however, is very expensive,
time consuming, and not suitable for real-time applica-
tions. Objective measurement methods, which replace the
listener panel with a computational algorithm, have been
the focus of more recent quality measurement research.
Objective methods can be classified as either double- or
single-ended, given a clean reference signal is required or
not, respectively. The block diagrams depicted in Fig. 1
illustrate the two objective measurement paradigms.

In the past, various double-ended measures have been
proposed to characterize the performance of noise sup-
pression algorithms (e.g., [4]). These measures, however,
did not take into account human perceptual characteris-
tics, thus, did not correlate well with subjective quality.
Recently, widely used double-ended objective measures
were tested as quality estimators of noise suppressed
speech (e.g., [5], [6]). Included in the measures was
the current state-of-art International Telecommunications
Union ITU-T double-ended algorithm, P.862 (PESQ).

Low correlations with subjective quality were reported
for most measures. Single-ended measurement, on the
other hand, is a more recent research field, thus not many
measures have been proposed. We have experimented
with the current state-of-art ITU-T P.563 algorithm and
low correlations with subjective quality have also been
found [7]. In summary, to date, a generally accepted eval-
uation metric for noise suppressed speech, be it double-
or single-ended, is stillnot available.

In this paper, our recent advances in single-ended qual-
ity measurement are described. In particular, an algorithm
that is suitable for noise suppressed speech is presented.
The proposed algorithm is based on a fast approximation
of the Kullback-Leibler distance (KLD) between Gaussian
mixture (GM) reference models of clean, noise corrupted,
and noise suppressed speech and a GM model trained
online for the test speech signal. Experiments suggest that
KLD can be employed as an effective measure of speech
quality not only for noise suppressed speech but also for
other commonly encountered degradation conditions.

The remainder of this paper is organized as follows. In
Section II, a description of subjective and objective testing
methodologies is given; Section II-C focuses on our
current advances in single-ended quality measurement.
In Section III, a detailed description of the proposed
algorithm is given. Algorithm design considerations are
covered in Section IV and algorithm performance is evalu-
ated in Section V. Section VI describes applications of the
proposed algorithm beyond the realm of speech quality
estimation; in particular, degradation classification and
characterization of background intrusiveness and signal
distortion is investigated. Lastly, conclusions are given in
Section VII.

II. SPEECHQUALITY MEASUREMENT

In this section, a brief overview of subjective and
objective speech quality measurement is presented in
Section II-A and Section II-B, respectively. Section II-C
describes our recent advances in single-ended objective
quality measurement.

A. Subjective Measurement

Speech quality is a subjective opinion, based on the
user’s reaction to the speech signal heard. A common
subjective test method makes use of a listener panel to
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TABLE I.
SUBJECTIVE RATING SCALE FOR OVERALL QUALITY (ACR), SIGNAL DISTORTION (SIG) AND BACKGROUND INTRUSIVENESS(BCK)

Rating ACR SIG BCK

5 Excellent Not Distorted Not Noticeable
4 Good Slightly Distorted Slightly Noticeable
3 Fair Somewhat Distorted Noticeable but Not Intrusive
2 Poor Fairly Distorted Somewhat Intrusive
1 Unsatisfactory Very Distorted Very Intrusive

measure speech quality on the integer absolute category
rating (ACR) scale shown in Table I (column labeled
ACR). The average of the listener scores is the subjective
mean opinion score, MOS [8]. With the advances of
noise suppression algorithms, unwanted artifacts such
as “musical noise” arise. It is unknown how humans
integrate the individual contributions of speech and noise
distortions when judging the overall quality of a noise
suppressed signal. As a result, the more recent ITU
Recommendation P.835 instructs listeners to successively
attend to and rate three different signal components of the
noise suppressed speech signal. These three components
are: (1) the speech content alone using the five-point
scale of signal distortion shown in column labeled “SIG”
of Table I, (2) the background content alone using the
five-point scale of background intrusiveness shown in
column labeled “BCK,” and (3) the overall speech-plus-
noise content using the five-point ACR scale.

Throughout most of this manuscript, focus is given to
overall speech quality estimation. In Section VI-B, an
extension to the proposed algorithm is presented which
allows for estimation of not only overall quality but
also signal distortion (SIG) and background intrusiveness
(BCK). In summary, subjective testing, despite being the
most reliable method of measuring speech quality, is
costly and not suitable for real-time applications. As a
consequence objective measurement methods are often
preferred in practice. Next, a brief overview of objective
quality measurement is given.

B. Objective Measurement: Brief Overview

As mentioned previously, objective quality measure-
ment can be classified as double or single-ended (Fig. 1
(a) and (b), respectively). Double-ended measures depend
on some form of distance metric between the input (clean)
and output (degraded) speech signals to estimate the
subjective MOS. Double-ended schemes often have two
underlying requirements, (1) that the input signal be of
high quality, i.e., clean, and (2) that the output signal be
of quality no better than the input. These requirements
prohibit the use of double-ended algorithms in situations
where the input is noisy and the system being tested
is equipped with a noise suppression algorithm. In fact,
ITU-T Recommendation P.862.3 [9] states that “the use
of PESQ with systems that include noise suppression
algorithms is not recommended.”
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Figure 1. Block diagram of (a) double-ended and (b) single-ended
speech quality measurement.

Moreover, double-ended objective measures have the
disadvantage of requiring access to a clean reference
signal. Often times, when noise suppression algorithms
are used, only the noise corrupted signal is available,
along with its enhanced counterpart. One of our recent
experiments has shown that PESQ performance is com-
promised if the clean reference signal is unavailable and
the noisy signal is used as reference instead. A decrease
in performance of approximately 33% is attained if the
noisy signal is used as reference, relative to using the
clean signal [7].

Problems associated with the “validity” of the reference
signal, such as those described above, can be avoided with
the use of single-ended quality measurement algorithms.
Currently, ITU-T standard P.563 is considered the state-
of-art single-ended measurement algorithm [10]. The doc-
umentation describing P.563 states that itis suitable for
transmission systems that include a noise suppression
algorithm. Our previous experiments [7], however, and
the results described herein, suggest otherwise. Next,
we give a general overview of the technologies and
methods we have been using to perform single-ended
quality measurement. Our most recent scheme is shown to
provide accurate quality estimation performance not only
for noise suppressed speech but also for other commonly
encountered degradation conditions. A detailed descrip-
tion of the proposed algorithm is given in Section III.

C. Objective Measurement: Recent Advances

Our research into single-ended quality measurement
entails comparisons between the test speech signal and
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Figure 2. Architecture of the proposed algorithm.

normative behavior of speech signals. Statistical models,
in particular, Gaussian mixture models (GMM), are used
to generate artificial reference models of speech behav-
ior. In [11], features of the received speech signal are
compared to reference GMMs obtained from clean speech
signals. A more robust system is achieved by equipping
the algorithm with information regarding the behavior of
speech degraded by different transmission and/or cod-
ing schemes as well as the behavior of clean speech
([12],[7]). In both schemes, the comparison between the
test signal and the reference model is achieved by means
of a consistency measure (normalized log-likelihood). A
consistency value is computed with respect to each of the
clean and degraded reference models and the values are
then mapped to an objective MOS.

Here, the proposed algorithm is updated to incorporate
reference models of noise suppressed speech signals.
Moreover, we replace the consistency measure with a fast
approximation of the Kullback-Leibler distance (KLD)
[13] between the reference models and a model trained
online from the test speech signal. Our experiments have
suggested that the KLD serves to provide an effective
indicator of quality for noise suppressed speech. A de-
scription of the proposed algorithm and the motivation
behind the use of KLDs is described next.

III. A LGORITHM DESCRIPTION

The overall architecture of the proposed algorithm is
depicted in Fig. 2. First, the level of the speech signal
is normalized and the signal is filtered to simulate the
handsets used in listening tests. Perceptual features are
then extracted from the test speech signal every 10
milliseconds. The voice activity detector (VAD) labels the
feature vector of each frame as either active or inactive
(background noise). Offline, three reference models are
created. High-quality undistorted speech signals, signals
corrupted by additive noise at low signal-to-noise ratios
(SNR), and noise suppressed speech signals are used to
produce reference models of the behavior of clean, noisy,
and noise suppressed speech features, respectively.

In all cases, the probability distribution of the features
is modeled with a Gaussian mixture model; separate
models are trained for active and for inactive frames.
Online, the expectation-maximization algorithm is used
to estimate a GM model for the features extracted from
the test signal. To achieve low-complexity processing, an
approximation of the KLD is used. KLDs are computed
between the online estimated models and the three ref-
erence models. The calculated distances, together with
a spectral flatness measure, serve as speech quality in-
dicators and are mapped to an estimated mean opinion
score,M̂OS [3]. A detailed description of each block is
provided in the remainder of this section.

A. Pre-processing and VAD

The pre-processing module performs level normaliza-
tion and intermediate reference system (IRS) filtering. The
level of the speech signal is normalized to -26 dBov using
the P.56 speech voltmeter [14] and the modified IRS filter
is applied to emulate the characteristic of the handset used
in listening tests (see description in [15]). Voice activity
detection (VAD) is employed to label speech frames as
active or inactive. In our previous research, a voicing
detector was also used to further label active frames as
“voiced” or “unvoiced”. Voicing decision is not carried
out here as, in our experiments with noise suppressed
speech, this extra processing did not garner substantial
improvement in estimation performance. The VAD from
the adaptive multi-rate (AMR) speech codec is used [16].

B. Feature Extraction

Perceptual linear prediction (PLP) cepstral coefficients
[17] serve as primary features and are extracted from
the speech signal every 10 milliseconds. We have ex-
perimented with different perceptual features (e.g., mel
frequency cepstral coefficients, RASTA-PLP [18], PLP),
feature representations (e.g., direct-form coefficients, cep-
stral coefficients, line spectral frequencies), and model
orders. Fifth order PLP cepstra is chosen as it strikes a
balance between performance and complexity.

The coefficients are obtained from an “auditory spec-
trum,” constructed to exploit three essential psychoacous-
tic precepts. First, the spectrum of the original signal is
warped into the Bark frequency scale and a critical band
masking curve is convolved with the signal. The signal
is then pre-emphasized by a simulated equal-loudness
curve to match the frequency magnitude response of the
ear. Lastly, the amplitude is compressed by the cubic-
root to match the nonlinear relation between intensity of
sound and perceived loudness. The auditory spectrum is
then approximated by an all-pole autoregressive model,
whose coefficients are transformed topth order PLP
cepstral coefficientsx = {xi}p

i=0. The zeroth coefficient
serves as a measure of the signal (log-)energy [19]. When
describing the PLP vector for a given framem, the
notationxm = {xi,m}p

i=0 is used. Moreover, the notation
x̄ = {x̄i}p

i=0 represents the PLP vector averaged over a
given set of frames.
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Figure 3. PLP cepstral behavior for clean speech (×), speech corrupted by background noise with an SNR of 5 dB (•) and 10 dB (?), and noisy
speech processed by a noise reduction algorithm (+). Cepstral coefficients are averaged over 1000 active speech frames. The plots depict (a)x̄2

versusx̄1, (b) x̄3 versusx̄2, (c) x̄4 versusx̄3, (d) x̄5 versusx̄4.

In preliminary experiments, we found that the behavior
of PLP cepstra is affected not only by additive noise (also
shown in [20] for linear prediction coefficients) but also
by different noise suppression algorithms. Figure 3 (a)-
(d) illustrates this behavior for clean, noisy, and noise
suppressed speech. The coefficients depicted in Fig. 3
are averaged over one thousand active speech frames.
Note that PLP cepstral coefficients lie in distinct areas
of the cepstral vector space with lower quality speech
(e.g., SNR=5 dB case in Fig. 3) lying further away
from the clean speech cluster. As can be seen, similar
trends are found for all PLP cepstral coefficients. Different
“distances” are obtained for different noise reduction
algorithms and different noise levels; this serves as moti-
vation to use the Kullback-Leibler distance as an indicator
of speech quality.

Lastly, the mean cepstral deviation (σ̄) of the test signal
is computed. The mean cepstral deviation is the average
of all “per-frame” deviations (σm) of the PLP coefficients
(excluding the zeroth coefficient). The deviation for the
mth frame is defined as

σm =

√√√√ 1
p− 1

p∑

i=1

(
xi,m −

(1
p

p∑

j=1

xj,m

))2

(1)

and p = 5. Previously,σ̄ has shown to be related to the

spectral flatness of the signal [7]. Here,σ̄ is calculated
for active and inactive frames separately (σ̄active and
σ̄inactive, respectively). Our experiments have shown that
the spectral flatness measure assists in discriminating be-
tween clean, noisy, and enhanced speech; similar findings
are reported in [21].

C. GM Reference Models and Parameter Estimation

Gaussian mixture models are used to model the PLP
cepstral coefficients of active and of inactive speech
frames. A Gaussian mixture density is a weighted sum
of M component densities

p(x|λ) =
M∑

i=1

αibi(x), (2)

where αi ≥ 0, i = 1, ..., M are the mixture weights,
with

∑M
i=1 αi = 1, and bi(x) are K-variate Gaussian

densities with mean vectorµi and covariance matrixΣi.
The parameter list,λ={λ1, . . . , λM}, defines a particular
Gaussian mixture density, whereλi = {µi, Σi, αi}.

Offline, six different Gaussian mixture densities,
pmodel,class(x|λ) are trained. The subscript “model” rep-
resents either clean, noisy, or noise suppressed; the sub-
script “class” represents either active or inactive frames.
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Online, the expectation-maximization (EM) algorithm
[22] is used to train a GM density on features extracted
from the test signal; a separate model is found for active
and for inactive frames (̃pclass(x|λ̃)). Experiments on our
databases show that if the EM algorithm is initialized
using thek-meansalgorithm it converges in approximately
17 iterations for the active models and in 7 iterations for
the inactive models. Faster implementations or alternate
initialization schemes may also be tested; this investiga-
tion, however, is left for future study.

D. KLD Calculation and MOS Mapping

The Kullback-Leibler distance measures the “distance”
between two probability density functionsp1(x) and
p2(x) by

D(p1, p2) =
∫

p1(x) ln
p1(x)
p2(x)

dx. (3)

D(p1, p2) describes how wellp2(x) approximatesp1(x).
Here, the KLD is calculated between the online-estimated
model (̃p for short) and the three reference models (p
for short), for active and inactive frames. Commonly, the
Monte Carlo method is used to compute the integral in
(3); this, however, is prohibitively expensive for online
quality measurement. We experiment with two fast ap-
proximations of the KLD; one (termedD1) assumes equal
number of Gaussian components between reference and
test modelsM = M̃ [23], while the other (D2) allows
for M 6= M̃ [24]. D1 is given by

D1(p, p̃) =
M∑

i=1

αi log
αi

α̃i
+

M∑

i=1

αi D(bi(x), b̃i(x)) (4)

where

D(bi(x), b̃i(x)) =
1
2

(
log

(det Σ̃i

detΣi

)
+ trace(Σ̃−1

i Σi)

+ (µ̃i − µi)
T Σ̃−1

i (µ̃i − µi)−K
)

(5)

is the KLD between twoK-variate Gaussian densities.
The approximation described in [24] is posed as a linear
programming problem. Many algorithms are available to
solve the problem efficiently, however, they are often
complex and time consuming. A simplification is per-
formed andD2 is defined here as

D2(p, p̃) =
M∑

i=1

M̃∑

j=1

αiα̃jD(bi(x), b̃j(x)). (6)

Note from (3)-(6) thatD1 and D2 are asymmetric
measures, i.e.,D(p, p̃) 6= D(p̃, p). We symmetrize the
measures according to [25], i.e.,

Dsym(p, p̃) =
1

1
D(p, p̃)

+
1

D(p̃, p)

. (7)

Symmetric measures are termedD1sym andD2sym. Per-
formance of the four measures is described in Section V.

As a final step, the six computed KLDs, together
with σ̄active and σ̄inactive, are mapped tôMOS. We
experiment with several different candidate mapping func-
tions: linear, multivariate polynomial and support vector
regression (SVR). Simulation results showed that a radial
basis SVR, with parameters optimized via linear search,
provides least estimation error. The results to follow are
all based on using SVR. The reader is referred to [26] for
a more comprehensive SVR review.

IV. A LGORITHM DESIGN CONSIDERATIONS

The KLD measureD1 described in (4) requires that
both the GM reference model and the online-estimated
model have the same number of Gaussian components. A
larger number of components may hamper online param-
eter estimation. It is observed that speech databases used
for subjective listening-quality assessment contain files
that are on average 7 seconds long with an activity ratio
of 60-85%. GM models with 6 and 2 components are thus
chosen for active and inactive models, respectively. This
choice results in a training ratio (ratio between number
of frames in the test signal and number of parameters
estimated during training) of approximately 10. For the
KLD measureD2 described in (6), we experiment with
reference models with6 ≤ M ≤ 16 for active frames
and 2 ≤ M ≤ 6 for inactive frames. Superior perfor-
mance is attained with 10 and 4 components, respectively.
Moreover, we allow the number of GMM components for
the test signal to vary such that the training ratio is kept
above 10. It is observed that for most signals on our test
databases (described in Section V) the chosen number of
components is 6 and 2, for active and inactive frames,
respectively.

V. EXPERIMENTAL RESULTS

In this section, experimental results are presented. Sec-
tion V-A describes the databases used for training and
testing of the proposed algorithm. Section V-B presents
the experimental results and Section V-C discusses algo-
rithm computational complexity.

A. Database Description

The NOIZEUS database [5] is used to design the GM
reference models. The database is comprised of clean
speech, speech corrupted by four types of noise (babble,
car, street, and train) at two low SNR levels (5 and 10 dB)
and noisy speech processed by 13 different noise suppres-
sion algorithms. The noise suppression algorithms fall un-
der four classes: spectral subtractive, subspace, statistical-
model based, and Wiener algorithms. A description of the
algorithms can be found in [5]. To train the MOS mapping
function, a proprietary subjectively scored database is
used. The database is comprised of speech corrupted by
car and street noise at SNR=15 dB and office noise at
SNR=20 dB and processed by the SMV speech codec; a
total of 960 speech files are available.
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Figure 4. Per-condition objective MOS versus subjective MOS for the
combined test datasets using the proposed algorithm.

Three datasets not used in training (i.e., unseen) are
used for testing. The first dataset (DS1) is comprised
of speech corrupted by four noise sources (babble, car,
street and hoth) at three SNR levels (0 dB, 10 dB, and
20 dB). The second (DS2) has noisy speech files (babble,
street, car) at three SNR levels (0 dB, 10 dB, and 20 dB)
processed by two noise suppression algorithms (SMV and
Adobe Auditionr with its “reduction level” parameter set
to 75%). The third (DS3) is comprised of noisy speech
signals (car, hoth, babble at 10 dB and 20 dB) processed
by three speech codecs (G.711, G.729, and AMR) with
packet loss concealment (PLC) capabilities. Random and
bursty losses are simulated at 2% and 4%. A silence in-
sertion concealment scheme is also present. Dataset DS3
is used to test the robustness of the proposed algorithm
to alternate (unseen) methods of speech enhancement, in
particular, packet loss concealment. The combined three
test datasets consist of 1080 speech files covering 135
degradation conditions.

B. Test Results

Table II presents “per-condition” correlation (R) and
root-mean-square error (ε) between subjective MOS and
P.563 objective MOS, for the three unseen datasets. Re-
sults are obtained after3rd order monotonic polynomial
regression, as recommended in [10]. The table also reports
the percentage improvement, relative to P.563, attained
by the proposed algorithm for the four KLD measures
described in Section III-D. The columns labeled “%R”
and “%ε” list the percentage increase inR and percentage
reduction inε, respectively. For measureD2sym, R and
ε are also shown to ease comparison. As can be seen,
the proposed algorithm outperforms P.563 on all three
datasets; as much as 60% increase inR and 37% decrease
in ε can be attained. The plot in Fig. 4 depicts objective
MOS (D2sym) versus subjective MOS where each data
point represents one of the 135 degradation conditions
available in the combined test dataset.

Furthermore, it is observed that for datasets DS1 and
DS2, similar performance is attained for asymmetric and
symmetric measures. This is due to the fact that whenp
and p̃ are similar (i.e., test signal is “consistent” with one
of the reference models, as expected for DS1 and DS2)
the KLD takes on small values andD(p, p̃) ≈ D(p̃, p) ≈
Dsym(p̃, p). On the other hand, when a test signal is not
as consistent with the reference model (e.g., noisy speech
processed by a PLC algorithm, as in DS3) the KLD takes
on larger values andD(p, p̃) 6= D(p̃, p). In this case, the
symmetric measure performs better. Another example of
this behavior can be observed with unseen test signals
corrupted by speech-correlated noise (MNRU); measure
D2 results inR = 0.782 and ε = 0.685 while D2sym

in R = 0.955 and ε = 0.326. For comparison purposes,
P.563 achievesR = 0.9142 and ε = 0.443.

C. Algorithm Processing Time

Processing time is also an important figure of merit
for gauging algorithm performance. We use the ANSI-C
reference implementation of P.563. With the exception of
the VAD algorithm (taken from the ANSI-C reference
implementation of the AMR codec), the remainder of the
proposed algorithm is implemented using Matlab version
7.2 Release 2006a. Simulations are run on a PC with a
2.8 GHz Pentium 4 processor and 2 GB of RAM. Here,
processing time is defined as the time it takes to process
ten speech files randomly selected from the three unseen
test sets. The ten files combined have a total length of
57.77 seconds. For P.563, a processing time of 13.75 sec-
onds is attained. The proposed algorithm (usingD2sym)
has a processing time of 9.04 seconds, an approximate
35% reduction. A slight decrease in processing time of
0.15 seconds can be attained by usingD1sym. Note that
a complete C implementation of the proposed algorithm
would further increase the speedup.

Table III describes the percentage of the total process-
ing time used by each module in the proposed algorithm.
As can be seen, the computational complexity of the
proposed algorithm is mainly attributable to voice activity
detection and level normalization and IRS filtering. A
more efficient VAD algorithm and implementation would
further decrease algorithm processing time. Experiments
also show that only a slight decrease in performance
is attained if level normalization and IRS filtering is
not performed; this can result in a 44% reduction in
processing time relative to P.563.

VI. B EYOND SUBJECTIVE QUALITY ESTIMATION

Due to the properties of the PLP cepstra described in
Section III-B, the KLD can serve purposes other than
MOS estimation. Sections VI-A and VI-B describe two
alternate applications; namely, degradation classification
and component quality estimation, respectively.

A. Experimenting with Degradation Classification

In some instances (e.g., testing the applicability of a
double-ended algorithm) it is desirable to detect if noise
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TABLE II.
PERFORMANCE OFP.563AND THE PROPOSED ALGORITHM ON THREE UNSEEN DATASETS

Unseen P.563 D1 D1sym D2 D2sym

Dataset R ε %R %ε %R %ε %R %ε R %R ε %ε

DS1 0.838 0.355 8.1 22.6 6.6 17.8 8.7 24.3 0.926 10.4 0.246 30.6
DS2 0.631 0.492 31.1 27.6 32.6 29.5 35.1 32.6 0.865 37.0 0.318 35.2
DS3 0.527 0.293 38.2 19.4 52.1 29.6 49.5 27.6 0.846 60.5 0.183 37.2

Average – – 34.6 23.5 42.4 29.5 42.3 30.1 – 48.8 – 36.2

TABLE III.
ALGORITHM PROCESSING TIMES

Processing Module Time (s) %

Level normalization & IRS 1.30 14.4
PLP calculation 0.91 10.1

Cepstral deviation calculation 0.01 0.1
Voice activity detection 5.90 65.3

GMM parameter estimation (EM) 0.68 7.5
KLD calculation & MOS mapping 0.24 2.6

Total 9.04 100

suppression has occurred or if the input signal is noisy.
As a simple proof-of-concept experiment, a three-node
classification tree [27] is designed to detect whether a
signal is noisy or if it has been processed by a noise
suppression algorithm. In this experiment, the KLD is
computed only between the online derived model and the
clean reference model, for both active and inactive frames.
We test the designed tree on 96unseenspeech signals:
48 noise-suppressed signals and 48 signals corrupted by
babble and car noise at 0 dB and 5 dB; all 96 signals
were correctly detected.

B. Component Quality Estimation

It is known that certain noise suppression algorithms
can introduce unwanted artifacts such as “musical noise.”
As mentioned in Section II, with Recommendation P.835,
noise suppressed signals are rated based on speech content
alone (SIG), on background noise alone (BCK), and on
speech plus noise content (OVRL). Currently, objective
measurement algorithms (both single- and double-ended)
can only attempt to estimate overall quality. Devising
an algorithm capable of also estimating signal distortion
and background intrusiveness would be invaluable. The
estimates can be used to test newer generations of noise
reduction algorithms and to assess the algorithms’ ca-
pability of maintaining speech signal naturalness whilst
reducing background noise to nonintrusive levels. In [5],
the NOIZEUS database is used to evaluate six double-
ended objective estimates of SIG and BCK (̂SIG and
B̂CK, respectively). The study makes use of the original
clean signal as a reference and low correlations with
subjective quality are reported (R < 0.65).

Due to the modular architecture of the proposed algo-
rithm, a simple extension can be implemented to allow
for single-ended measurement of BCK and SIG. In par-
ticular, two new SVR mapping functions are obtained. To
estimate signal distortion, a 4-dimensional SVR is devised
to map the KLDs computed from active frames (relative
to the three reference models) andσ̄active into ŜIG. To
estimate background intrusiveness, a 5-dimensional SVR
is designed to map the KLDs computed from inactive
frames,σ̄inactive, and an estimated SNR tôBCK. Here,
we use the SNR estimated by the AMR VAD algorithm.

Since only the NOIZEUS database contains subjective
SIG and BCK scores, we use 10-fold cross validation
to measure the performance of the proposed scheme.
The NOIZEUS database is randomly divided into 10
data sets of almost equal size. Training and testing is
performed in 10 trials, where, in each trial, one of the
data sets serves as a test set and the remaining 9 are
combined to serve as a training set. Each data set serves
as a test set only once. The ten resultingR’s and ε’s
are averaged to obtain the cross-validation performance
figures. The proposed method attainsR = 0.80, ε = 0.33,
andR = 0.74, ε = 0.39, for SIG and BCK, respectively.
The results are encouraging given that the original clean
signal isnot available as a reference.

VII. C ONCLUSION

A low-complexity single-ended speech quality esti-
mation algorithm is proposed. The algorithm provides
superior quality estimates relative to P.563 for several
commonly encountered distortions, such as those caused
by noise suppression or packet loss concealment algo-
rithms. It is also demonstrated that, besides offering the
conventional function of measuring the overall quality of
a noise suppressed speech signal, the algorithm is also
capable of measuring signal distortion and background
intrusiveness. This functionality is not available with
current state-of-art ITU-T standard algorithms.
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