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1. Introduction

Due to the “best-effort” nature of current Internet Protocol
(IP) connections, real-time speech quality monitoring is
needed in order to maintain acceptable quality of service
for voice over IP (VoIP) communications [1]. Traditionally,
subjective quality assessment tests, such as the mean opinion
score (MOS) test [2, 3], are used to quantify perceived
speech quality. Subjective tests, however, are expensive and
time-consuming and, for the purpose of real-time quality
monitoring, have been replaced by objective speech quality
measurement methods.

For VoIP communications, objective methods can be
classified as either signal or parameter based. Signal-based
methods use perceptual features extracted from the speech
signal to estimate quality. Parameter-based methods, on the
other hand, use VoIP connection parameters, such as codec,
packet loss pattern, loss rate, jitter, and delay, to compute
impairment factors which are then used to estimate speech
quality. Such parameters are commonly obtained from the
real-time transport protocol (RTP) header [4], real-time
transport control protocol (RTCP) [5], and RTCP extended
reports (RTCP-XRs) [6].

Current state-of-the-art signal based quality estimation
algorithms perform well for traditional telephony applica-
tions but recent studies have found large “per-call” quality
estimation errors and error variance [7–9]. Large estimation
errors limit the use of signal-based methods for online
quality monitoring and control purposes [10]. Parameter-
based methods, on the other hand, can provide lower per-
call quality estimation errors [11, 12] and have been widely
deployed in VoIP communication services. The major disad-
vantage of parameter-based measurement is that distortions
that are not captured by the connection parameters are not
accounted for. Examples of such distortions include acoustic
noise type, temporal clippings, noise suppression artifacts,
as well as distortions in tandem connections caused by
unidentified equipment and signal conditions.

Today, with the emergence of advanced technologies such
as wireless local and wide area networks, the number of
wireless-VoIP connections has grown substantially [13, 14].
Recent research by consulting firm ON World has suggested
that by 2011 the number of wireless-VoIP users around
the world will rise to 100 million from 7 million in 2007
[15]. Wireless-VoIP inter-networking results in tandeming
of heterogeneous links which can produce new impairment
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combinations that are not addressed by current standard
quality measurement algorithms. Representative combina-
tions of distortions can include (i) acoustic background
noise (with varying levels and types) combined with packet
loss concealment artifacts, (ii) acoustic background noise
combined with temporal clipping artifacts (resultant from
voice activity detection errors), or (iii) noise suppression
artifacts (and residual noise) combined with speech codec
distortions. In this paper, the effects of such “modern”
degradation combinations on the performance of three
International Telecommunications Union ITU-T standard
algorithms are investigated. Focus is placed on listening
quality, hence, factors such as jitter and delay, which affect
conversational quality [16], are not considered.

The remainder of this paper is organized as follows.
First, a brief overview of subjective and objective quality
measurement is given in Section 2. Simulated wireless-
VoIP impairments and details about the subjective listening
test are presented in Section 3. Analysis of variance tests
and quantitative algorithm performance comparisons are
described in Section 4 and the quantification of overall per-
formance loss is presented in Section 5. Lastly, conclusions
are drawn in Section 6.

2. Speech Quality Measurement

In this section, a brief overview of subjective and objective
speech quality measurement methods is given.

2.1. Subjective Measurement. Speech quality is the result
of a subjective perception-and-judgment process, during
which a listener compares the perceptual event (speech
signal heard) to an internal reference of what is judged to
be good quality. Subjective assessment plays a key role in
characterizing the quality of emerging telecommunications
products and services, as it attempts to quantify the end
user’s experience with the system under test. Commonly, the
mean opinion score (MOS) test is used wherein listeners
are asked to rate the quality of a speech signal on a 5-
point scale, with 1 corresponding to unsatisfactory speech
quality and 5 corresponding to excellent speech quality [2, 3].
The average of the listener scores is termed the subjective
listening MOS, or as suggested by ITU-T Recommendation
P.800.1 [17], MOS-LQS (listening quality subjective). Formal
subjective tests, however, are expensive and time consuming,
thus unsuitable for “on-the-fly” applications.

2.2. Objective Measurement. Objective speech quality mea-
surement replaces the listener panel with a computational
algorithm, thus facilitating automated real-time quality
measurement. Indeed, for the purpose of real-time quality
monitoring and control on a network-wide scale, objective
speech quality measurement is the only viable option.
Objective measurement methods aim to deliver quality
estimates that are highly correlated with those obtained from
subjective listening experiments. As mentioned previously,
for VoIP communications objective quality measurement
can be classified as either signal based or parameter based.

Such measurement methods are described in the subsections
to follow.

2.2.1. Signal-Based Measures. Signal based methods can be
further classified as double-input (Figure 1(a)) or single-
input (Figure 1(b)) depending on whether a clean reference
signal is required or not, respectively. Such schemes are
commonly referred to as double-ended or single-ended,
respectively. Research into double-ended signal based quality
measurement dates back to the early 1980s [18]. ITU-T
Recommendation P.862 [19] (better known as perceptual
evaluation of speech quality, PESQ) is the current state-of-
the-art double-ended standard measurement algorithm. An
in-depth description of the PESQ algorithm is available in
[20, 21].

Single-ended measurement, on the other hand, is a more
recent research field, and only recently (late 2004) has an
algorithm been standardized. The ITU-T Recommendation
P.563 [22] represents the current state-of-the-art single-
ended standard algorithm for traditional telephony applica-
tions. A detailed description of the P.563 signal processing
steps is available in [23]. Throughout the remainder of this
paper, listening quality MOS obtained from an objective
model will be referred to as MOS-LQO [17].

2.2.2. Parameter-Based Measures. Parameter based measure-
ment, as depicted in Figure 1(c), was first proposed in the
early 1990s by the European Telecommunications Standards
Institute (ETSI). The ETSI computation model (so-called
E-model) was developed as a network planning tool and
describes several parametric models of specific network
impairments and their interaction with subjective quality
[24]. In the late 1990s, the E-model was standardized
by the ITU-T as Recommendation G.107 [25]. The basic
assumption of the E-model is that transmission impairments
can be transformed into psychological impairment factors,
which in turn, are additive in the psychoacoustic domain.

A transmission rating factor R is obtained from the
impairment factors by

R = R0 − Is − Id − Ie−e f f + A, (1)

where Is, Id, and Ie−e f f represent impairment factors due
to transmission (e.g., quantization distortion), delay, and
effective equipments (e.g., codec impairments at different
packet loss scenarios), respectively. R0 describes a base factor
representative of the signal-to-noise ratio andA an advantage
factor; the R rating ranges from 0 (bad) to 100 (excellent).
If the delay impairment factor Id is not considered, the R
rating can be mapped to listening quality MOS by means
of equations described in ITU-T Recommendation G.107
Annex B [25]. Throughout the remainder of this paper,
listening quality MOS obtained from E-model planning
estimates will be referred to as MOS-LQE [17].

Several improvements to Recommendation G.107 have
been proposed or are under investigation [26] in order to
incorporate more modern transmission scenarios. Impair-
ment factors, obtained from subjective tests, are described
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Figure 1: Block diagram of (a) double- and (b) single-ended single-based measurement, and (c) parameter-based measurement.

in [25, 27, 28] for several common network configura-
tions. Impairment factors for alternate configurations can
be obtained either from subjective MOS tests (according
to ITU-T Recommendation P.833 [29]) or from objective
methods (Recommendation P.834 [30]). As mentioned pre-
viously, the E-model is a transmission planning tool and is
not recommended for online quality measurement. Hence,
several extensions have been proposed to improve E-model
performance for online monitoring. Representative exten-
sions include nonlinear impairment combination models
to compensate for high levels of “orthogonal” (unrelated)
impairments [31], or online signal-to-noise ratio (SNR)
estimation to account for varying background noise levels
[32].

In this study, an “extended” E-model implementation is
used. With the extended version, nontabulated equipment
impairment factors (e.g., codecs described in Section 3 under
4% random and bursty packet losses) are obtained from
subjectively scored speech data [12, 29]. Moreover, since
degraded speech files have been artificially generated, the
true noise level is used to compute MOS-LQE for noise-
corrupted speech. Note that extended E-model performance
may be favored with this unrealistic assumption that true
noise level information is available online. In order to
investigate a more realistic scenario, the noise level is
measured in real time and is incorporated into the E-model
in a manner similar to that described in [12, 32]. Here,
the “noise analysis” module available in P.563 [22] is used
to estimate noise levels online for the noisy and noise-
suppressed speech signals. In controlled experiments, the
noise level meter attained a correlation of 0.96 with the
true noise level, computed both prior to and post-noise-
suppression.

Moreover, equipment impairment factor values are cur-
rently not available for noise suppression algorithms and
are the focus of ongoing research [26]. In fact, artifacts
introduced by such enhancement schemes are dependent
on the noise type and noise levels. In our experiments,
the estimated noise level (post enhancement) is used in
the computation of MOS-LQE for noise-suppressed speech.
It is important to emphasize, however, that while using
the estimated (or measured) noise level is convenient for
quantifying noise artifacts that remain after enhancement,

noise suppression artifacts that arise during speech activity
are not accounted for. As emphasized in Section 5, this
is a major shortcoming of parameter based measurement
methods.

3. Experiment Setup

In this section, the degradation conditions available in the
datasets—simulated wireless-VoIP, reference, and conven-
tional VoIP—as well as the subjective listening tests are
described.

3.1. Wireless-VoIP Degradation Conditions. The source
speech signals used in our experiments are in English and
French (four signals per language) and have been artifi-
cially corrupted to simulate distortions present in modern
wireless-VoIP connections. Degradation sources that are
commonly present in the wireless communications chain can
include signal-based distortions such as acoustic background
noise or noise suppression artifacts. These impairments are
combined with distortions present in the VoIP chain, which
may include codec distortions and packet loss concealment
(PLC) artifacts.

To simulate the effects of acoustic background noise
and codec distortions (including PLC artifacts), clean speech
signals are corrupted by three additive noise sources (hoth,
babble, car) at two SNR levels (10 dB and 20 dB). Noisy
speech is then processed by three speech codecs: G.711,
G.729, and Adaptive Multi rate (AMR). Random and bursty
packet losses are simulated at 2% and 4% using the ITU-
T G.191 software package [33]; the Bellcore model is used
for bursty losses. Losses are applied to speech packets,
thus simulating a transmission network with voice activity
detection (VAD). The G.729 and AMR codecs are equipped
with built-in PLC algorithms to compensate for lost packets.
For the G.711 codec, two PLC strategies are investigated:
the one described in [34] and a simple silence insertion
scheme which is included to investigate the effects of acoustic
noise combined with temporal clipping artifacts; the latter
is referred to as “G.711∗” throughout the remainder of this
paper. Packet sizes are 10 milliseconds for the G.729 codec
and 20 milliseconds for the remaining codecs. Moreover,
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Table 1: Description of the 54 available noise-related degradation conditions.

Conditions Tandem Codec-PLC Noise Type SNR (dB) Loss Type Loss Rate (%)

1–48 None G.711, G.711∗, G.729, AMR

hoth 10,20 random, bursty 2

car 10 random, bursty 2

babble 10 random, bursty 2

hoth 10,20 bursty 4

car 10 bursty 4

babble 10 bursty 4

49–54 Asynchronous G.729 × G.729, AMR× AMR
car 10 random, bursty 2

car 10 bursty 4

in the case of G.729 and AMR codecs, asynchronous
codec tandem conditions are also considered (e.g., G.729 ×
G.729). A total of 432 speech signals (half English and half
French) are available, covering 54 noise-related degradation
conditions as detailed in Table 1.

Noise suppression artifacts combined with codec distor-
tions are used to further simulate impairments introduced
by wireless-VoIP connections. Here, the noise suppression
algorithm available as a preprocessing module in the SMV
codec is used [35]. The SMV codec per se is not used in
our experiments as ITU-T P.563 has not been fully validated
for such technologies [22]. Clean speech is corrupted by
four noise types (hoth, car, street, and babble) at three SNR
levels (0 dB, 10 dB, and 20 dB). Noisy speech is processed by
the noise suppression algorithm and the noise-suppressed
signal is input to the G.711, G.729 or AMR speech codec.
As mentioned above, tandem conditions are also considered
for the G.729 and AMR codecs. For noise suppression related
impairments, a total of 192 speech signals (half English half
French) are available, covering 24 degradation conditions as
described in Table 2.

3.2. Reference Degradation Conditions. The multilingual
datasets also include 128 reference-condition speech files
which are commonly used in subjective listening tests to
facilitate validation of test measurements and comparison
with measurements from other tests. Reference conditions
include modulated noise reference unit (MNRU) [36] at
seven different signal-to-noise ratios (5–35 dB, 5 dB incre-
ments), as well as G.711, G.729, and AMR codecs operating
in clean conditions either singly or in tandem. As described
in Section 4.1, these reference conditions are used to map the
datasets to a common MOS-LQS scale.

3.3. Conventional VoIP Degradation Conditions. Conven-
tional VoIP degradation conditions are also included with
the English and French datasets. With conventional VoIP
conditions, clean speech, as opposed to noise-corrupted or
noise-suppressed speech, is processed by the G.711, G.711∗,
G.729, and AMR codec-PLC schemes (singly or in tandem),
under 2% and 4% random and bursty packet loss conditions.
A total of 192 speech files (half English half French) covering
24 degradation conditions (no tandem: 4 codec-PLC types×

2 loss types × 2 loss rates; tandem: 2 codecs × 2 loss types ×
2 loss rates) are available. Conventional VoIP data is used as
a benchmark in Section 5 to quantify the decrease in quality
measurement accuracy due to wireless-VoIP distortions.

3.4. Subjective Listening Tests. Source speech files were
recorded in an anechoic chamber by four native Canadian
French talkers and four native Canadian English talkers. Half
of the talkers were male and the other half female. Clean
speech signals were filtered using the modified intermediate
reference system (MIRS) send filter according to ITU-T
Recommendation P.830 Annex D [37]. Degraded speech
signals were further filtered using the MIRS receive filter.
In both instances, speech signals were level adjusted to
−26 dBov (dB overload) and stored with 8 kHz sampling rate
and 16-bit precision. Similar to the ITU-T Supp. 23 dataset
[38], each speech file comprises two sentences separated by
an approximately 650 milliseconds pause.

Two subjective MOS tests (one per language) were
conducted in 2006 following the requirements defined in
[2, 37]. Sixty listeners, native in each language, participated
in each listening quality test and rated processed speech
files described in Sections 3.1–3.3. Listener gender ratio was
roughly one-to-one and listeners consisted of naı̈ve adults
(aged 18–50) with normal hearing recruited from the general
population. Beyerdynamic DT 770 headphones were used
and the listening room ambient noise level was kept below
28 dBA. Statistics for the subjective scores collected in the
listening tests are listed in Table 3 for the wireless-VoIP,
reference, and conventional VoIP degradation conditions.

4. Performance of ITU-T Standard Algorithms

In this section, two methods are used to assess the per-
formance of PESQ, P.563, and the extended E-model for
the wireless-VoIP distortion combinations described in Sec-
tion 3.1. The first method, based on analysis of variance tests,
investigates the performance sensitivity of current state-of-
the-art algorithms to different wireless-VoIP degradation
sources, such as noise type, noise level, packet losses, and
codec-PLC type. The second method uses correlation and
root-mean-square errors, computed between MOS-LQS and
MOS-LQO (or MOS-LQE), to quantify the performance of
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Table 2: Description of the 24 available noise suppression related degradation conditions.

Conditions Tandem Codec- PLC Noise Type SNR (dB)

1–18 None G.711, G.729, AMR

hoth 0,10

car 10

street 10

babble 10,20

19–24 Asynchronous G.729 × G.729, AMR × AMR hoth, car, babble 10

Table 3: Subjective score (MOS-LQS) statistics, separately for the
English and French speech files, for the wireless-VoIP, reference, and
conventional VoIP degradation conditions.

Statistic
Wireless-VoIP Reference VoIP

English French English French English French

Minimum 1.05 1.02 1.30 1.11 2.52 2.09

Maximum 3.80 4.20 4.70 4.67 4.55 4.40

Average 2.43 2.42 3.77 3.63 3.67 3.36

Standard
deviation

0.50 0.61 0.89 0.91 0.45 0.53

existing standard algorithms under modern wireless-VoIP
communication scenarios.

4.1. Analysis of Variance. In this section, factorial analysis of
variance (ANOVA) is used to assess the effects of different
wireless-VoIP degradation on objective quality measurement
performance. In particular, the effects of codec-cum-PLC
type and acoustic background noise (type and level) are
investigated using the noise-corrupted and noise-suppressed
speech signals described in Section 3.1. For noise-corrupted
speech, the effects of packet loss rates and packet loss patterns
(random or bursty) are also investigated.

For the purpose of real-time quality monitoring and
control, it is known that objective measures are required to
provide low per-call estimation errors. Hence, we use per-
sample MOS residual as the performance criterion; MOS
residual is given by MOS-LQO minus MOS-LQS (or MOS-
LQE minus MOS-LQS). In the analysis, raw MOS-LQO and
MOS-LQE results (without mappings) are used. As shown in
Section 4.2, mappings such as the one described in [39] can
actually decrease algorithm performance.

In order to obtain a sufficiently large number of samples
for variance analysis, a combined English-French speech
dataset is used. It is important to emphasize that the
English and French datasets were produced concurrently
by the same organization, under identical conditions, with
the only differences between them being the speakers,
the spoken text, and the listener panels. Notwithstanding,
in order to remove the differences between the English
and French subjective scales, as suggested by the statistics
in Table 3, a third-order monotonic mapping is trained
between the English reference-condition MOS-LQS values
and the French reference MOS-LQS values. The scatter plot
in Figure 2 illustrates the French versus English reference
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Figure 2: Scatter plot of English and French MOS-LQS values
obtained from anchor conditions available in the datasets. The
dotted line depicts the obtained third-order monotonic mapping
used for dataset combination.

MOS-LQS values available in the datasets; the dotted curve
represents the obtained polynomial. The combined dataset
used for analysis comprises the French dataset described in
Section 3.1 and the English dataset mapped to the French
scale. This English-to-French scale mapping was chosen as it
resulted in a larger reduction in mean absolute error between
the two datasets of 0.13 MOS. After the mapping is applied,
no significant differences are observed between the scales, as
suggested by a t significance test (P = .22).

4.1.1. Main Effects. Table 4 shows F-statistics (F) and P-
values (P) obtained from factorial ANOVA for noise-
corrupted speech files. As can be seen, with a 95% confidence
level, codec-PLC and noise type have significant main effects
(i.e., P < .05) on the performance of all three objective
measures. Noise level is shown to have significant main
effects on E-model and PESQ performance and packet loss
rate only on E-model performance. The box and whisker
plots depicted in Figures 3(a)–3(c) assist in illustrating
these behaviors, respectively; the plots illustrating the effects
of packet losses on E-model performance are omitted for
brevity.

The boxes have lines at the lower quartile, median,
and upper quartile values; the whiskers extend to 1.5 times
the interquartile range. Outliers are represented by the
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Table 4: F-statistics (F) and P-values (P) of MOS residual
errors (MOS-LQO/LQE minus MOS-LQS) obtained from factorial
ANOVA with 95% confidence levels for noise-corrupted speech
files.

Impairment
E-model PESQ P.563

F P F P F P

Codec-PLC 162.4 0 5.7 10−3 8.2 10−5

Packet loss rate 15.9 10−4 .13 .7 3.1 .08

Noise type 3.1 .04 145.2 0 43.1 0

Noise level 7.7 .006 35.1 10−8 .85 .36

symbol “+”. The vertical width of the notches that cut into
the boxes at the median line indicates the variability of
the median between samples. When the notches of two
boxes do not overlap, their medians are significantly different
at the 95% confidence level [40]. In the plots, abscissa
labels are omitted to avoid crowding; the missing labels can
be obtained by periodically replicating the shown labels.
Moreover, the abbreviation “LQO-LQS” is used for the
ordinate labels to represent the MOS residual for all three
measurement algorithms.

From Figure 3(a), it can be seen that larger E-model
residual errors are attained for the silence insertion PLC
scheme (represented by “G711∗”) followed by the AMR
codec-cum-PLC. Furthermore, P.563 performance is lower
for G.711-processed speech irrespective of the PLC strat-
egy. According to [22], P.563 has only been validated for
PLC schemes in CELP (codebook-excited linear prediction)
codecs such as G.729; this can explain the poor performance
obtained for G.711. Nonetheless, for the G.729 codec, P.563
attains residual errors that can be greater than one MOS
point; on a five-point MOS scale, this can be the difference
between having acceptable and unacceptable quality [9].

From Figures 3(b) and 3(c), it can be observed that
E-Model and PESQ underestimate MOS-LQS for speech
corrupted by car noise; E-model underestimates MOS-LQS
for all noise types and levels. Figure 3(c) shows that P.563
performance is not significantly affected by noise level. This
may be due to the fact that P.563 is equipped with a noise
analysis module which not only estimates the SNR but also
takes into account other spectrum-related measures such as
high frequency spectral flatness. High frequency analysis,
however, may be the cause of P.563 sensitivity to noise type
since babble and car noise have low-pass characteristics.
Ongoing research is seeking a better understanding of the
limitations of signal [41, 42], and parameter-based [26]
measurement of noisy speech.

Table 5 shows F-statistics and P-values obtained from
factorial ANOVA for noise-suppressed speech files. With a
95% confidence level, it can be seen that for noise-suppressed
speech, codec-PLC type incurs significant main effects on
E-model and PESQ performance. Noise type significantly
affects PESQ and P.563 performance, and noise level (prior
to noise suppression) incurs significant main effects on the
performance of all three algorithms. The box and whisker
plots depicted in Figures 4(a)–4(c) help illustrate these
behaviors, respectively.
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Figure 3: Significant main effects of (a) codec, (b) noise type, and
(c) noise level on the accuracy of objective quality measurement of
noise corrupted speech.



EURASIP Journal on Audio, Speech, and Music Processing 7

G711 G729 AMR

−1

−0.5

0

0.5

1

1.5

2

Codec-PLC type

PESQ P.563E-model

M
O

S 
re

si
du

al
 (

LQ
O

-L
Q

S)

(a)

−1.13

−0.63

0

0.37

0.87

E-model

PESQ P.563

Noise type

M
O

S 
re

si
du

al
 (

LQ
S-

LQ
O

)

Babble Car Hoth Street

(b)

0 10 20

−0.5

0

0.5

1

1.5

2

Noise level (dB)

PESQE-model P.563

M
O

S 
re

si
du

al
 (

LQ
O

-L
Q

S)

(c)

Figure 4: Significant main effects of (a) codec, (b) noise type, and
(c) noise level on the accuracy of objective quality measurement of
noise-suppressed speech.

Table 5: F-statistics (F) and p-values (P) of MOS residual
errors (MOS-LQO/LQE minus MOS-LQS) obtained from factorial
ANOVA with 95% confidence levels for noise-suppressed speech
files.

Impairment
E-model PESQ P.563

F P F P F P

Codec-PLC 5.5 .005 3.9 .02 1.23 .30

Noise type 1.6 .19 21.6 10−10 33.5 10−14

Noise level 94.2 0 70.3 0 80.5 0

As seen from the plots, E-model performance is inferior
for AMR-processed speech. Both PESQ and P.563 under-
estimate MOS-LQS for car noise and overestimate MOS-
LQS for hoth and street noise. Moreover, similar effects
of noise level on estimation accuracy are observed for all
three algorithms, with superior performance attained for
speech corrupted by noise at higher SNR levels (10 dB and
20 dB). At low SNR (0 dB prior to noise suppression), all
three algorithms overestimate MOS-LQS and PESQ attains
superior performance.

Table 6 summarizes all significant main effects of
wireless-VoIP impairments on PESQ, P.563, and E-model
performance for both noisy and noise-suppressed degrada-
tion conditions. For noise-suppressed speech, packet loss
rate effects were not included in the datasets hence are
represented by the term “NI” in the table. As observed, PESQ
and E-model performance are most sensitive to wireless-
VoIP distortions.

4.1.2. Two-Way Interactions. Factorial ANOVA with a 95%
confidence level has suggested four significant two-way
interaction effects on noise-corrupted speech files:

(i) codec-PLC and packet loss rate (E-model, F = 10.3,
P = 0),

(ii) codec-PLC and loss pattern (PESQ, F = 3.4,
P = 0.02),

(iii) codec-PLC and noise type (E-model, F = 9.1,
P = 0), and

(iv) codec-PLC and noise level (E-model, F = 19.5,
P = 0).

Significant interaction effects were not observed for
noise-suppressed speech. Figures 5(a) and 5(b) depict box
and whisker plots that help illustrate the two-way interaction
effects of codec-PLC and noise type as well as codec-PLC and
noise level on E-model performance. Plots illustrating the
remaining two-way interactions are omitted for brevity. As
can be seen from the plots, inferior performance is attained
for babble and car noise (and for SNR = 20 dB) with
G.711-processed speech with the silence insertion packet loss
concealment scheme (G711∗). In such scenarios, perceptual
artifacts are introduced due to the sudden changes in signal
energy (i.e., temporal clippings); such artifacts are not
accounted for by E-model quality estimates if the speech
sample is additionally corrupted by noise. Other algorithms
such as G.729 and AMR are equipped with comfort noise
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Figure 5: Significant two-way interactions of (a) codec and noise type and (b) codec and noise level on E-model accuracy.

Table 6: Significant main effects of wireless-VoIP degradation sources on PESQ, P.563, and E-model performance. A check mark (
√

)
indicates significant deviations from subjective test data; “NI” stands for “not included” in the datasets.

Impairment
Noise-corrupted Noise-suppressed

PESQ P.563 E-model PESQ P.563 E-model

Codec-PLC
√ √ √ √

—
√

Packet loss rate — —
√

NI NI NI

Noise type
√ √ √ √ √

—

Noise level
√

—
√ √ √ √

generation capabilities which may be used to reduce the
perceptual annoyance resultant from temporal clippings
[43].

4.2. Analysis of Variance. In this section, we investigate the
accuracy of the three algorithms with speech degraded under
wireless-VoIP conditions by means of correlation (R) and
root-mean-square error (RMSE) measures. The correlation
between N MOS-LQS (yi) and MOS-LQO (wi) samples is
computed using Pearson’s formula

R =
∑N

i=1(wi −w)
(
yi − y

)

√∑N
i=1 (wi −w)2∑N

i=1

(
yi − y

)2
, (2)

where w is the average of wi, and y is the average of yi. The
RMSE, in turn, is computed using

RMSE =
√
√
√
∑N

i=1

(
wi − yi

)2

N
. (3)

Results in Table 7 are reported on a per-condition basis where
MOS-LQS and MOS-LQO sample values are averaged over
each degradation condition prior to computation of R and
RMSE. For comparison, performance figures are reported
before and after 3rd-order monotonic polynomial regression
for P.563 and E-model. Moreover, as suggested by [44],

PESQ performance is reported before and after the mapping
described in [39]. Mappings are obtained for each dataset
separately and the post mapping performance figures are
represented by R∗ and RMSE∗ in Table 7.

Using Fisher’s z-test, PESQ performance is shown to be
significantly different (with a 95% confidence level) from
E-model and P.563 performance for the English dataset for
both R and R∗. On the French dataset, however, PESQ
performance is shown to be significantly different from
E-model and P.563 only for R. Similarly, E-model and
P.563 performances are only significantly different for R∗.
Additionally, using Levene’s test (here we assume MOS-
LQO/MOS-LQE estimates are unbiased, thus RMSE values
are treated as sample variances), it is observed that RMSE
values are significantly different (95% confidence level)
between E-model and PESQ, and between E-model and
P.563 for both the English and the French datasets. For the
English dataset, RMSE values between PESQ and P.563 are
also shown to be significantly different. In terms of RMSE∗,
significant differences were only observed on the French
dataset between P.563 and PESQ.

Overall, PESQ attains superior performance and P.563
and E-model attain comparable performance. In all cases,
performance is substantially lower than that reported for
traditional telephony applications (e.g., see [20, 21, 23]). The
plots in Figures 6(a)–6(c) depict the overall per-condition
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Figure 6: Per-condition MOS-LQO/LQE versus MOS-LQS for the overall dataset after 3rd-order polynomial mapping for (a) the E-model
and (b) P.563, and (c) PESQ before (“◦”) and after (“×”) the mapping described in [39].

Table 7: Per-condition performance of E-model, PESQ, and P.563 on wireless-VoIP degradation conditions available in the English and
French datasets. Post mapping performance is represented by R∗ and RMSE∗.

E-model PESQ P.563

R RMSE R∗ RMSE∗ R RMSE R∗ RMSE∗ R RMSE R∗ RMSE∗

English 0.69 0.70 0.71 0.38 0.83 0.29 0.82 0.47 0.72 0.52 0.75 0.41

French 0.71 0.65 0.73 0.42 0.78 0.38 0.77 0.46 0.74 0.50 0.78 0.37

MOS-LQO versus MOS-LQS for the English dataset obtained
with the E-model, P.563, and PESQ, respectively. Plots (a)
and (b) are after 3rd-order polynomial mapping and plot
(c) depicts PESQ MOS-LQO before (“◦”) and after (“×”)
the mapping described in [39]. As can be seen from the

plots and from Table 7, PESQ performance decreases once
the mapping is applied. This suggests that an alternate
mapping function needs to be investigated for modern
degradation conditions such as those present in wireless-
VoIP communications.
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5. Quantification of Overall Performance Loss

The comparisons described above suggest that the perfor-
mance of three standard objective quality measurement algo-
rithms is compromised for degradation conditions present
in wireless-VoIP communications. To quantify the decrease
in measurement accuracy, the conventional VoIP degraded
speech data described in Section 3.3 is used as a benchmark.
With the conventional VoIP impairment scenarios, standard
algorithms are shown to perform reliably (e.g., see [23, 45]).
For the benchmark data, it is observed that MOS-LQE
estimates attain an average RMSE∗ of 0.21; that is, 48% lower
than the average RMSE∗ reported in Table 7. PESQ and P.563
MOS-LQO estimates, in turn, attain average RMSE∗ values
of 0.29 and 0.26, respectively; that is, approximately 35%
lower than the average values reported in Table 7.

As observed, E-model performance is affected more
severely by wireless-VoIP distortions. Such behavior is
expected as the E-model is a parameter based measurement
method and, as such, overlooks signal-based distortions that
are not captured by the link parameters. As a consequence,
improved performance is expected from hybrid signal-
and-parameter based measurement schemes where signal
based distortions are estimated from the speech signal and
used to improve parameter based quality estimates. Hybrid
measurement has been the focus of more recent quality
measurement research (e.g., see [12, 32]).

6. Conclusions

We have investigated the effects of wireless-VoIP degrada-
tion on the performance of three state-of-the-art quality
measurement algorithms: ITU-T PESQ, P.563 and E-model.
Factorial analysis of variance tests has suggested that the
performance of the aforementioned algorithms is sensitive
to several degradation sources including background noise
level, noise type, and codec-PLC type. Factorial analysis has
also suggested several significant two-way interaction effects,
in particular on E-model performance (e.g., codec and noise
type or codec and noise level). Additionally, quantitative
analysis has suggested that algorithm performance can be
severely compromised and root-mean-square errors can
increase by approximately 50% relative to conventional VoIP
communications.
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